Астрономические приборы и наблюдения с ними. Оптические телескопы – типы и устройство. Как устроены телескопы различных оптических схем? Из каких основных элементов состоит телескоп

В настоящее время на полках магазинов можно обнаружить самые разные телескопы. Современные производители заботятся о своих клиентах и стараются совершенствовать каждую модель, постепенно устраняя недостатки каждой и них.

В целом подобные устройства все же устроены по одной похожей схеме. Что представляет собой общее устройство телескопа? Об этом далее.

Труба

Главная часть инструмента – это труба. В ней помещается объектив, в который далее попадают лучи света. Объективы встречаются сразу разных видов. Это рефлекторы, катадиоптрические объективы и рефракторы. У каждого вида есть свои плюсы и минусы, которые изучают пользователи перед покупкой и уже, опираясь на них, делают выбор.

Основные составляющие каждого телескопа: труба и окуляр

Помимо трубы в инструменте есть еще и искатель. Можно сказать, что это миниатюрная подзорная труба, которая соединяется с основной трубой. При этом наблюдается увеличение в 6-10 раз. Эта деталь устройства необходимо для предварительного наведения на объект наблюдения.

Окуляр

Еще одна важная часть любого телескопа – это окуляр. Именно через эту сменную деталь инструмента пользователь и ведет наблюдение. Чем короче данная часть, тем больше может быть увеличение, но при этом меньше угол зрения. Именно по этой причине лучше всего приобретать вместе с устройством сразу несколько разных окуляров. Например, с постоянным и переменным фокусом.

Монтировка, светофильтры и прочие детали

Монтировка также бывает нескольких типов. Как правило, телескоп укрепляется на треноге, которая имеет две поворотные оси. А есть еще и дополнительные «навески» на телескоп, которые стоит упомянуть. В первую очередь это светофильтры. Они необходимы астрономам для самых разных целей. Но для новичков приобретать их необязательно.

Правда, если пользователь планирует любоваться луной, то понадобится специальный лунный фильтр, который защитит глаза от слишком яркой картинки. Есть также особые фильтры, которые способны устранять мешающий свет городских фонарей, но стоят они довольно дорого. Чтобы рассматривать предметы в правильном положении, пригодятся также диагональные зеркала, которые, в зависимости от типа, способны отклонять лучи на 45 или 90 градусов.

Принцип работы телескопа заключается не в увеличении объектов, а в сборе света. Чем больше размер главного светособирающего элемента - линзы или зеркала, тем больше света в него попадет. Важно, что именно общее количество собранного света в конечном счете определяет уровень детализации видимого - будь то удаленный ландшафт или кольца Сатурна. Хотя увеличение, или сила для телескопа тоже важно, оно не имеет решающего значения в достижении уровня детализации.

Телескопы постоянно изменяются и совершенствуются, но принцип работы остается одним и тем же.

Телескоп собирает и концентрирует свет

Чем больше выпуклая линза или вогнутое зеркало, тем больше света в него попадает. А чем больше света попадает в , тем более удаленные объекты он позволяет увидеть. Человеческий глаз обладает своей собственной выпуклой линзой (хрусталиком), но эта линза очень мала, поэтому света она собирает довольно мало. Телескоп позволяет увидеть больше именно потому, что его зеркало способно собрать больше света, чем человеческое око.

Телескоп фокусирует световые лучи и создает изображение

Для того, чтобы создать четкое изображение, линзы и зеркала телескопа собирают пойманные лучи в одну точку - в фокус. Если свет не собрать в одну точку, изображение окажется размытым.

Виды телескопов

Телескопы можно разделить по спосбу работы со светом на "линзовые", "зеркальные" и комбинированные - зеркально-линзовые телескопы.

Рефракторы - преломляющие телескопы. Свет в таком телескопе собирается с помощью двояковыпуклой линзы (собственно, она и является объективом телескопа). Среди любительских инструментов наиболее распространены ахроматы обычно двухлинзовые, но бывают и более сложные. Ахроматический рефрактор состоит из двух линз - собирающей и рассеивающей, что позволяет компенсировать сферические и хроматические аберрации - проще говоря, искажения потока света при проходе через линзу.

Немного истории:

В рефракторе Галилея (созданном в 1609 году) использовались две линзы для того, чтобы собрать максимум звездного света. и позволить человеческому глазу его увидеть. Свет, проходя через сферическое зеркало, формирует картинку. Сферическая линза Галилея делает картинку нечеткой. К тому же такая линза разлагает свет на цветовые составляющие, из-за чего вокруг светящегося объекта образуется размытая цветная область. Поэтому выпукаля сферическая собирает звездный свет, а следующая за ней вогнутая линза превращает собранные световые лучи обратно в параллельные, что позволяет вернуть четкость и ясность наблюдаемому изображению.

Рефрактор Кепплера (1611)

Любая сферическая линза преломляет световые лучи, расфокусирует их и размывет картинку. Сферическая линза Кепплера обладает меньшей кривизной и большим фокусным расстоянием, чем линза Галилея. Поэтому точки фокусировки лучей, проходящих через такую линзу, оказываются ближе друг к другу, что позволяет снизить, но не убратть совершенно, искажения изображения. Вообще-то Кепплер сам не создал такого телескопа, но предложенные им улучшения оказали сильное влияние на дальнейшее развитие рефракоторов.

Ахроматический рефрактор

Ахроматический рефрактор создан на основе телескопа Кепплера, но вместо одной сферической линзы в нем используются две линзы различной кривизны. Свет, проходящий через две эти линзы, фокусируется в одной точке, т.е. этот способ позволяет избежать и хроматической, и сферической абберации.

  • Телескоп Sturman F70076
    Простой и легкий рефрактор для начинающих с диаметром объектива 50 мм. Увеличение - 18*,27*,60*,90*. Комплектуется двумя окулярами - 6 мм и 20 мм. Можно использовать как трубу, поскольку он не переворачивает изображение. На азимутальном кронштейне.
  • >Телескоп Konus KJ-7
    60-мм длиннофокусный телескоп-рефрактор на немецкой (экваториальной) монтировке. Максимальное увеличение - 120 крат. Подойдет детям и начинающим астрономам.
  • Телескоп MEADE NGC 70/700mm AZ
    Классический рефрактор с диаметром 70 мм и максимальным полезным увеличением до 250*. Поставляется с тремя окулярами, призмой и монтировкой. Позволяет наблюдать почти все планеты Солнечной системы и слабые звезды до 11,3 звездной величины.
  • Телескоп Synta Skywatcher 607AZ2
    Классический рефрактор на азимутальной монтировке AZ-2 на алюминиевoм штативе и возможностью микромерного наведения телескопа по высоте. Диаметр объектива 60-мм, максимальное увеличение 120 крат, проницающая способность 11 (звездные величины). Вес 5 кг.
  • Телескоп Synta Skywatcher 1025AZ3
    Легкий рефрактор с альт-азимутальной монтировкой AZ-3 на алюминиевом штативе c микромерным наведением телескопа по обеим осям. Может использоваться в качестве телеобъектива к большинству зеркальных камер для съемки удаленных объектов. Диаметр объектива 100 мм, фокусное расстояние 500 мм, проницающая способность 12 (звездные величины). Вес 14 кг.

Рефлектор - это любой телескоп, объектив которого состоит только из зеркал. Рефлекторы являются отражающими телескопами, и изображение в таких телескопах оказывается с другой стороны от оптической системы, чем в рефракторах.

Немного истории

Рефлекторный телескоп Грегори (1663)

Джеймс Грегори ввел совершенно новую технологию в изготовление телескопов, придумав телескоп с параболическим главным зеркалом. Изображение, которое можно наблюдать в подобный телескоп, оказывается свободным и от сферических, и от хроматических аберраций.

Рефлектор Ньютона (1668)

Ньютон использовал металлическое главное зеркало для сбора света и следующее за ним направляющее зеркало, которое перенаправляло световые лучи к окуляру. Таким образом удалось справиться с хроматической аберрацией - ведь вместо линз в этом телескопе используются зеркала. Но картинка все равно получилась размытой из-за сферического искривления зеркала.

До сих пор часто рефлектором называется именно телескоп, сделанный по схеме Ньютона. К сожалению, и он не свободен от аберраций. Чуть в сторону от оси и уже начинает проявляться кома (неизопланатизм) - аберрация связанная с неравностью увеличения разных кольцевых зон апертуры. Кома приводит к тому, что пятно рассеивания выглядит как проекция конуса - острой и самой яркой частью к центру поля зрения, тупой и округлой в сторону от центра. Размер пятна рассеивания пропорционален удалению от центра поля зрения и пропорционален квадрату диаметра апертуры. Поэтому особенно сильно проявление комы в так называемых "быстрых" (светосильных) Ньютонах на краю поля зрения.

Ньютоновские телескопы очень популярны и сегодня: они очень просты и дешевы в изготовлении, а значит, средний уровень цен на них гораздо ниже, чем на соответствующие рефракторы. Но сама конструкция накладывает на такой телескоп некоторые ограничения: искажения лучей, проходящих через диагональное зеркало, заметно ухудшают разрешающую способность такого телескопа, а при увеличении диаметра объектива пропорционально увеличивается длинна трубы. В результате телескоп становится слишком большим, да и поле зрения при длинной трубе становится меньше. Собственно, рефлекторы с диаметром больше 15 см практически не производятся, т.к. недостатков у таких приборов будет больше, чем достоинств.

  • Телескоп Synta Skywatcher 1309EQ2
    Рефлектор с диаметром объектива 130 мм на экваториальной монтировке. Максимальное увеличение 260. Проницательная способность 13.3
  • Телескоп F800203M STURMAN
    Рефлектор с диаметром объектива 200 мм на экваториальной монтировке. Поставляется с двумя окулярами, лунным фильтром, штативом и видоискателям.
  • Телескоп Meade системы Ньютона 6 LXD-75 f/5 с пультом EC
    Классический ньютоновский рефлектор с диаметром объектива 150 мм и полезным увеличением до 400 крат.Телескоп для любителей астрономии, ценящих большой световой диаметр и большую светосилу. Монтировка с электронным приводом и часовым ведением позволяет проводить астрофотосъемку с длинными выдержками.

Зеркально-линзовые (катадиоптрические) телескопы используют как линзы, так и зеркала, за счет чего их оптическое устройство позволяет достичь великолепного качества изображения с высоким разрешением, при том, что вся конструкция состоит из очень коротких портативных оптических труб.

Параметры телескопов

Диаметр и увеличение

При выборе телескопа важно знать о диаметре объектива, разрешении, увеличении и качеству конструкции и составляющих.

Количество света, собираемого телескопа, напрямую зависит от диаметра (D) главного зеркала или линзы. Количество света, проходящего через объектив, пропорционально его площади.

Кроме диаметра, для характеристики объектива важна величина относительного отверстия (А), равная отношению диаметра к фокусному расстоянию (его еще называют светосилой).

Относительным фокусом называют величину, обратную величине относительного отверстия.

Разрешение - это способность отображения деталей - т.е. чем больше разрешение, тем лучше изображение. Телескоп с высоким разрешением способен разделить два удаленных близких объекта, в то время как в телескоп с низким разрешением будет виден только один, смешанный из двух, объект. Звезды являются точечными источниками света, поэтому наблюдать их сложно, и в телескопе можно увидеть только дифракционное изображение звезды в виде диска с кольцом света вокруг него. Официально предельным разрешением визуального телескопа называют минимальный угловой промежуток между парой одинаковых по яркости звезд, когда они еще видны при достаточном увеличении и отсутствие помех со стороны атмосферы раздельно. Эта величина для хороших инструментов примерно равна 120/D угловых секунд, где D - апертура телескопа (диаметр) в мм.

Увеличения телескопа должны лежать в диапазоне от D/7 до 1,5D, где D - диаметр апертуры объектива телескопа. То есть для трубы с диаметром 100 мм окуляры надо подбирать так, чтобы они обеспечивали увеличения от 15х до 150х.

При увеличении численно равном диаметру объектива, выраженному в миллиметрах, появляются первые признаки дифракционной картины, и дальнейший рост увеличения только ухудшит качество изображения, не давая различить мелкие детали. Помимо этого стоит помнить о дрожании телескопа, атмосферной турбулентности и т.д. Поэтому, при наблюдениях Луны и планет обычно не используют увеличения, превышающие 1,4D - 1,7D.В любом случае, хороший инструмент должен "вытягивать" до 1,5D без существенного ухудшения качества изображения. Лучше всего с этим справляются рефракторы, а рефлекторы с их центральным экранированием уже не могут уверенно работать на таких увеличениях, поэтому, использовать их для наблюдений Луны и планет нецелесообразно.

Верхняя граница рациональных увеличений определяется эмпирически и связана с влиянием дифракционных явлений (при росте увеличения уменьшается размер выходного зрачка телескопа - его выходная апертура). Оказалось, что наивысшее разрешение достигается при выходных зрачках менее 0.7 мм и дальнейший рост увеличения не приводит к увеличению числа подробностей. Напротив, рыхлое, мутное и неяркое изображение создает иллюзию уменьшения детализации. Увеличения большие 1,5D имеют смысл как более комфортные, особенно для людей с дефектами зрения и только по ярким контрастным объектам.

Нижняя граница разумного диапазона увеличений определяется тем, что отношение диаметра объектива к диаметру выходного зрачка (т.е. диаметру выходящего из окуляра пучка света) равно отношению их фокусных расстояний, т.е. увеличению. Если диаметр пучка, выходящего из окуляра, превысит диаметр зрачка наблюдателя, часть лучей будет обрезана, и глаз наблюдателя увидит меньше света - и меньшую часть изображения.

Таким образом вырисовывается следующий ряд рекомендуемых увеличений 2D, 1,4D, 1D, 0,7D, D/7. Увеличение в D/2..D/3 полезно для наблюдения обычных по размерам скоплений и неярких туманных объектов.

Монтировки

Монтировка телескопа - часть телескопа, на которой укрепляется его оптическая труба. Позволяет направить его в наблюдаемую область неба, обеспечивает стабильность его установки в рабочем положении, удобство выполнения наблюдений различного типа. Монтировка состоит из основания (или колонны), двух взаимно перпендикулярных осей для поворотов трубы телескопа, привода и системы отсчёта углов поворота.

В экваториальной монтировке первая ось направлена в полюс мира и называется полярной (или часовой) осью, а вторая лежит в плоскости экватора и называется осью склонений; с нею скреплена труба телескопа. При повороте телескопа вокруг 1-й оси меняется его часовой угол при постоянном склонении; при повороте вокруг 2-й оси изменяется склонение при постоянном часовом угле. Если телескоп установлен на такой монтировке, слежение за небесным телом, движущимся вследствие видимого суточного вращения неба, осуществляется путём поворота телескопа с постоянной скоростью вокруг одной полярной оси.

В азимутальной монтировке первая ось вертикальная, а вторая, несущая трубу, лежит в плоскости горизонта. Первая ось служит для поворота телескопа по азимуту, вторая - по высоте (зенитному расстоянию). При наблюдениях звёзд в телескоп, установленный на азимутальной монтировке, его необходимо непрерывно и с высокой степенью точности поворачивать одновременно вокруг двух осей, причём со скоростями, меняющимися по сложному закону.

Использованы фотографии с сайта www.amazing-space.stsci.edu

Можно с уверенностью сказать, что все когда-либо мечтали поближе рассмотреть звезды. С помощью бинокля или подзорной трубы можно полюбоваться ярким ночным небом, однако вы вряд ли сможете разглядеть в эти приборы что-то подробно. Здесь понадобится более серьезная аппаратура – телескоп. Чтобы иметь у себя дома такое чудо оптической техники, необходимо выложить крупную сумму, что не всем любителям прекрасного по карману. Но не стоит отчаиваться. Можно сделать телескоп своими руками, и для этого, как бы это абсурдно ни звучало, необязательно быть великим астрономом и конструктором. Лишь бы было желание и непреодолимая тяга к неизведанному.

Почему стоит попробовать сделать телескоп? Совершенно точно можно сказать, что астрономия – наука очень сложная. И требует от человека, ею занимающегося, очень много усилий. Может произойти такая ситуация, что вы приобретете дорогостоящий телескоп, а наука о Вселенной вас разочарует, или вы попросту поймете, что это совершенно не ваше занятие. Для того чтобы разобраться, что к чему, достаточно сделать телескоп для любителя. Наблюдение за небом через такой аппарат позволит увидеть в разы больше чем через бинокль, а также вы сможете разобраться, интересно ли вам это занятие. Если вы загоритесь изучением ночного неба, тогда, вам, конечно, не обойтись без профессионального аппарата. Что можно увидеть в самодельный телескоп? Описания того, как сделать телескоп, можно отыскать во многих учебниках и книгах. Такой аппарат позволит четко рассмотреть лунные кратеры. С помощью него можно увидеть Юпитер и даже разглядеть четыре его основных спутника. Знакомые нам со страниц учебников кольца Сатурна также могут быть замечены при помощи телескопа, своими руками изготовленного.

Кроме этого, еще множество небесных тел можно увидеть своими глазами, например, Венеру, большое количество звезд, скоплений, туманностей. Немного об устройстве телескопа Главные части нашего агрегата - это его объектив и окуляр. С помощью первой детали собирается свет, источаемый небесными телами. То, насколько далекие тела можно будет видеть, а также каково будет увеличение прибора, зависит от диаметра объектива. Второй же участник тандема, окуляр, предназначен для увеличения получаемой картинки, чтобы наш глаз мог любоваться красотами звезд. Теперь о двух самых распространенных типах оптических устройств – рефракторах и рефлекторах. Первый тип имеет объектив, выполненный из системы линз, а второй – зеркальный объектив. Линзы для телескопа, в отличие от рефлекторного зеркала, достаточно легко можно найти в специализированных магазинах. Покупка зеркала для рефлектора обойдется недешево, а его самостоятельное изготовление будет для многих невыполнимо.

Поэтому, как уже стало понятно, мы будем собирать именно рефрактор, а не зеркальный телескоп. Закончим теоретический экскурс понятием об увеличении телескопа. Оно равняется отношению фокусных расстояний объектива и окуляра. Личный опыт: как я сделала лазерную коррекцию зрения Вообще-то, я не всегда излучала радость и уверенность в себе. Но обо всем по порядку.. Как сделать телескоп? Подбираем материалы Для того чтобы начать сборку аппарата, необходимо запастись 1-диоптриевой линзой или ее заготовкой. К слову сказать, такая линза будет с фокусным расстоянием один метр. Диаметр заготовок будет около семидесяти миллиметров. Нужно также отметить, что линзы для телескопа лучше не выбирать очковые, так как в основном они имеют вогнуто-выпуклую форму и плохо подходят для телескопа, хотя если они есть под рукой, то можно использовать и их. Рекомендуется использовать длиннофокусные линзы двояковыпуклой формы. В качестве окуляра можно взять обычную лупу тридцатимиллиметрового диаметра. Если есть возможность достать окуляр от микроскопа, то, несомненно, стоит этим воспользоваться. Он отлично подойдет и для телескопа. Из чего же сделать корпус для нашего будущего оптического помощника? Отлично подойдут две трубы разного диаметра из картона или плотной бумаги. Одна (та, что короче) будет вставляться во вторую, с большим диаметром и более длинную.

Трубу с меньшим диаметром следует сделать длиной сантиметров двадцать – это в итоге будет окулярный узел, а основную рекомендуется сделать метровой. Если под рукой не найдется нужных заготовок – не беда, корпус можно смастерить из ненужного рулона обоев. Для этого обои наматываются в несколько слоев для создания нужной толщины и жесткости и проклеиваются. Каким сделать диаметр внутренней трубы, зависит от того, какую мы используем линзу. Подставка для телескопа Весьма важный момент в создании своего телескопа - подготовка специальной подставки для него. Без таковой будет почти невозможно им пользоваться. Есть вариант установки телескопа на штатив от фотоаппарата, который снабжен двигающейся головкой, а также крепежом, который позволит фиксировать различные положения корпуса. Сборка телескопа Линза для объектива закрепляется в маленькой трубе выпуклостью наружу. Крепить ее рекомендуется с помощь оправы, представляющей собой кольца, по диаметру схожие с самой линзой.

У вас есть замечательная заготовка для главного зеркала. Но только если это линзы из К8. Потому что в конденсорах (а это линзы, несомненно, конденсорные) часто ставят пару линз, одна из которых из крона, другая из флинта. Флинтовая линза в качестве заготовки для главного зеркала абсолютно не годится по ряду причин (одна из которых -- большая чувствительность к температуре). Флинтовая линза прекрасно подходит в качестве основания для полировальника, но шлифовать ею не получится, так как у флинта твердость и сошлифовываемость значительно больше, чем у крона. В этом случае используйте пластмассовый шлифовальник.

Во-вторых, очень советую внимательно ознакомиться не только с книгой Сикорука, но и с "Телескопом астронома-любителя" М.С. Навашина. И в том, что касается испытаний и измерений зеркала, следует ориентироваться именно на Навашина, у которого этот аспект очень подробно расписан. Естественно, что не стоит в точности делать теневой прибор "по Навашину", так как сейчас легко внести в его конструкцию такие усовершенствования, как использовать мощный светодиод в качестве источника света (что значительно повысит интенсивность света и качество измерений на непокрытом зеркале, а также позволит вплотную приблизить "звезду" к ножу, в качестве основания целесообразно использовать рельс от оптической скамьи и др.). К изготовлению теневого прибора нужно подойти со всем вниманием, так как именно тем, насколько хорошо вы его сделаете, будет определяться качество вашего зеркала.

Помимо вышеупомянутого рельса от оптической скамьи, полезным "хабаром" для его изготовления является суппорт от токарного станка, который станет замечательным устройством для плавного перемещения ножа Фуко и одновременно -- для измерения этого перемещения. Не менее полезной находкой будет готовая щель от монохроматора или дифрактометра. Еще советую приспособить к теневому прибору вебкамеру -- это позволит устранить погрешность от положения глаза, уменьшит конвекционные помехи от тепла вашего тела, а кроме того, позволит регистрировать и хранить все теневые картины на протяжении процесса полировки и фигуризации зеркала. В любом случае, основание для теневого прибора должно быть надежным и тяжелым, крепление всех частей -- идеально жестким и прочным, а перемещение -- без люфтов. Организуйте трубу или тоннель вдоль всего хода лучей -- это уменьшит воздействие конвекционных потоков, а кроме того, позволит работать при свете. Вообще конвекционные потоки -- бич любых методов испытания зеркала. Боритесь с ними всеми возможными средствами.

Не пожалейте денег на покупку хороших абразивов и смолы. Варить смолу и отмучивать абразивы -- это во-первых непроизводительные затраты сил, во-вторых, плохая смола -- плохое зеркало, а плохие абразивы -- куча царапин. А вот шлифовальный станок может и должен быть самым примитивным, единственное требование к нему -- безупречная жесткость конструкции. Здесь совершенно идеальна деревянная бочка, засыпанная щебнем, вокруг которой в свое время ходили Чикин, Максутов и другие "отцы-основатели". Полезным дополнением к бочке Чикина является диск "Грация", позволяющий не наматывать километры вокруг бочки, а работать, стоя на одном месте. Бочку для обдирки и грубой шлифовки лучше оборудовать на улице, а вот тонкая шлифовка и полировка -- это дело уже для помещения с постоянной температурой и без сквозняков. Альтернатива бочке, особенно на этапе тонкой шлифовки и при полировке -- пол. На коленях, конечно, работать менее удобно, но жесткость такого "станка" -- идеальна.

Нужно особое внимание уделить креплению заготовки. Хорошим вариантом разгрузки линзы является приклейка за "пятачок" минимальных размеров в центре и три упора около краев, которые должны лишь касаться, но не давить на заготовку. Пятачок нужно нашлифовать на плоскость и довести до №120.

Для профилактики царапин и сколов необходимо до обдирки сделать фаску по краю заготовки и довести ее до тонкой шлифовки. Ширина фаски должна быть из расчета, чтобы она сохранилась до конца работы с зеркалом. Если фаска "кончится" в процессе -- ее нужно возобновить. Фаска должна быть равномерная, иначе она будет источником астигматизма.

Наиболее рациональна обдирка кольцом, либо уменьшенным шлифовальником в положении "зеркало снизу", но учитывая небольшой размер зеркала, можно делать и по Навашину -- зеркало сверху, шлифовальник нормального размера. В качестве абразива используется карбид кремния или карбид бора. При обдирке нужно остерегаться нашлифовать астигматизм и "уйти" в гиперболоидную форму, к чему у такой системы есть явная склонность. Избежать последнего помогает чередование нормального штриха с укороченным, особенно ближе к концу обдирки. Если при обдирке изначально получена максимально близкая к сфере поверхность, это резко ускорит всю дальнейшую работу по шлифовке.

Абразивы при шлифовке -- начиная со 120-го номера и мельче лучше использовать электрокорунд, а крупнее -- карборунд. Главной характеристикой абразивов, к которой надо стремиться, является узость спектра распределения частиц. Если частицы в данном конкретном номере абразива разнятся по размеру, то более крупные зерна -- источник царапин, а более мелкие -- это источник местных ошибок. И с абразивами такого качества их "лестница" должна быть гораздо более пологой, а к полировке мы придем с "волнами" на поверхности, от которых потом будем долго избавляться.

Шаманский прием против такого при не самых лучших абразивах -- это перед сменой номера на более тонкий пошлифовать зеркало еще более тонким абразивом. Например, вместо ряда 80-120-220-400-600-30u-12u-5u ряд будет таким: 80-120-400-220-600-400-30u-600... и так далее, причем эти промежуточные стадии достаточно короткие. Почему это работает -- не знаю. С хорошим абразивом можно шлифовать после 220-го номера сразу тридцатимикронным. В разведенные с водой грубые (до №220) абразивы хорошо добавлять "Фейри". Микронные порошки имеет смысл поискать с добавлением талька (или добавить самому, но надо быть уверенным, что тальк абразивно-стерилен) -- он уменьшает вероятность царапин, облегчает процесс шлифовки и уменьшает закусывание.

Еще один совет, позволяющий контролировать форму зеркала еще на этапе шлифовки (даже не тонкой) -- это приполировать поверхность, растерев замшей с полиритом до блеска, после этого можно легко определить фокусное по Солнцу или лампе и даже (на более тонких этапах шлифовки) получить теневую картину. Признаком точности сферической формы также является однородность шлифованной поверхности и быстрая однородная зашлифовка всей поверхности после смены абразива. Варьируйте в небольших пределах длину штриха -- это поможет избежать "ломаной" поверхности.

Процесс полировки и фигуризации, наверное, настолько хорошо и подробно описан, что разумнее не вдаваться в него а отослать к Навашину. Правда, он рекомендует крокус, а сейчас все пользуются полиритом, в остальном все то же самое. Крокус, кстати, полезен при фигуризации -- он медленнее работает, чем полирит, и меньше риск "пропустить" нужную форму.

Прямо за линзой, дальше по трубе, необходимо оборудовать диафрагму в виде диска с тридцатимиллиметровым отверстием строго посередине. Диафрагма предназначена для сведения на нет искажений картинки, появляющихся в связи с использованием одиночной линзы. Также установка ее повлияет на уменьшение света, которое получает объектив. Сам объектив телескопа монтируется около основной трубы. Естественно, что в окулярном узле не обойтись без самого окуляра. Для начала необходимо приготовить для него крепления. Делаются они в виде картонного цилиндра и схожи с окуляром по диаметру. Крепление устанавливается внутрь трубы с помощью двух дисков. Они такого же диаметра, что и цилиндр, и имеют отверстия посередине. Настройка аппарата в домашних условиях Фокусировать изображение необходимо с помощью расстояния от объектива до окуляра. Для этого окулярный узел перемещается в основной трубе.

Так как трубы должны быть хорошо прижаты вместе, то необходимое положение будет надежно зафиксировано. Процесс настройки удобно производить на больших ярких телах, например, Луне, также и соседний дом подойдет. При сборке очень важно добиться того, чтобы объектив с окуляром располагались параллельно и их центры были на одной прямой. Еще один способ сделать телескоп своими руками заключается в изменении размера диафрагмы. Варьируя ее диаметр, можно добиться оптимальной картинки. Используя оптические линзы 0,6 диоптрий, которые имеют фокусное расстояние примерно два метра, можно добиться увеличения диафрагмы и сделать приближение на нашем телескопе гораздо больше, однако стоит понимать, что корпус при этом тоже увеличится.

Осторожно – Солнце! По меркам Вселенной наше Солнце - далеко не самая яркая звезда. Однако для нас это очень важный источник жизни. Естественно, что, имея телескоп в своем распоряжении, многим захочется рассмотреть его поближе. Но надо знать, что это очень опасно. Ведь солнечный свет, проходя через построенные нами оптические системы, может сфокусироваться до такой степени, что будет способен прожечь насквозь даже толстую бумагу. Что уж говорить о нежной сетчатке наших глаз. Поэтому надо запомнить очень важное правило: нельзя смотреть на Солнце в приближающие устройства, тем более в телескоп домашний, без специальных средств защиты.

Прежде всего, надо приобрести объектив и окуляр. В качестве объектива можно использовать два стекла для очков (мениски) по +0,5 диоптрии, расположив их выпуклыми сторонами одно наружу, а другое внутрь на расстоянии 30 мм одно от другого. Между ними поставьте диафрагму с отверстием диаметром около 30 мм. Это в крайнем случае. Но лучше использовать длиннофокусную двояковыпуклую линзу.

Для окуляра можно взять обычное увеличительное стекло (лупу) 5-10-кратную небольшого диаметра порядка 30 мм. В качестве варианта может быть также окуляр от микроскопа. Такой телескоп даст увеличение в 20-40 раз.

Для корпуса можно взять плотную бумагу или подобрать металлические или пластмассовые трубки (их должно быть две). Короткая трубка (около 20 см, окулярный узел) вставляется в длинную (около 1м, основную). Внутренний диаметр основной трубы должен быть равен диаметру очковой линзы.

Объектив (очковая линза) крепится в первой трубе выпуклой стороной наружу с помощью оправы (колец диаметром, равным диаметру линзы и толщиной около 10 мм). Сразу за линзой устанавливается диск - диафрагма с отверстием по центру диаметром 25 - 30 мм, это необходимо с целью уменьшения значительных искажений изображения, получаемых за счет одиночной линзы. Объектив устанавливается ближе к краю основной трубы. Окуляр устанавливается в окулярном узле ближе к его краю. Для этого вам придется изготовить из картона крепление для окуляра. Оно будет состоять из цилиндра, равного по диаметру окуляру. Этот цилиндр будет крепиться к внутренней стороне трубы двумя дисками диаметром, равным внутреннему диаметру окулярного узла с отверстием, равным по диаметру окуляру.

Фокусировку производим изменением расстояния между объективом и окуляром за счет движения окулярного узла в основной трубе, а фиксация будет происходить за счет трения. Фокусировку лучше выполнять на ярких и больших объектах: Луна, яркие звезды, близлежащие здания.

Создавая телескоп, необходимо учитывать, что объектив и окуляр должны быть параллельны друг другу, а их центры должны находиться строго на одной линии.

Изготовление самодельного телескопа-рефлектора

Существует несколько систем телескопов-рефлекторов. Любителю астрономии легче изготовить рефлектор системы Ньютона.

В качестве зеркал можно использовать плоско-выпуклые конденсаторные линзы для фотоувеличителей, обрабатывая их плоскую поверхность. Такие линзы диаметром до 113 мм можно приобрести и в фотомагазинах.

Вогнутая сферическая поверхность отполированного зеркала отражает всего около 5% падающего на него света. Поэтому ее надо покрыть светоотражающим слоем алюминия или серебра. Алюминировать зеркало в домашней обстановке невозможно, а серебрить вполне возможно.

В телескопе-рефлекторе системы Ньютона диагональное плоское зеркало отклоняет вбок конус лучей, отраженных от главного зеркала. Изготовить плоское зеркало самим очень трудно, поэтому воспользуйтесь призмой с полным внутренним отражением от призменного бинокля. Также можно использовать для этой цели плоскую поверхность линзы, поверхность светофильтра от фотоаппарата. Покройте ее слоем серебра.

Набор окуляров: слабый окуляр с фокусным расстоянием 25-30 мм; средний 10-15 мм; сильный 5-7 мм. Можно для этой цели использовать окуляры от микроскопа, бинокля, объективы от малоформатных кинокамер.

Главное зеркало, плоское диагональное зеркало и окуляр монтируйте в трубе телескопа.

Для телескопа-рефлектора сделайте параллактический штатив с полярной осью и осью склонения. Полярная ось должна быть направлена на Полярную звезду.

Такими средствами считаются светофильтры и способ проецирования изображения на экран. Что если собрать телескоп своими руками не получилось, а посмотреть на звезды очень хочется? Если вдруг по какой-то причине сборка самодельного телескопа невозможна, то не стоит отчаиваться. Можно подыскать телескоп в магазине за приемлемую цену. Сразу же возникает вопрос: "А где они продаются?" Такую технику можно найти в специализированных магазинах астроприборов. Если такого в вашем городе нет – тогда стоит посетить магазин фототехники или найти другой магазин, торгующий телескопами. Если вам повезло - в вашем городе есть специализированный магазин, да еще с профессиональными консультантами, тогда вам точно туда. Перед походом рекомендуется посмотреть обзор телескопов. Во-первых, вы разберетесь с характеристиками оптических устройств. Во-вторых, вас будет труднее обмануть и подсунуть некачественный товар.

Тогда вы точно не разочаруетесь в покупке. Несколько слов о покупке телескопа через Всемирную сеть. Этот вид покупок становится очень популярным в наше время, и не исключено, что вы воспользуетесь именно им. Весьма удобно: вы подыскиваете нужный вам аппарат, а потом заказываете. Однако можно наткнуться на такую неприятность: после долгого выбора может оказаться, что товара уже нет в наличии. Гораздо более неприятная проблема – это доставка товара. Не секрет, что телескоп - очень хрупкая вещь, поэтому вам могут довезти лишь осколки. Возможен вариант покупки телескопа с рук.

Такой вариант позволит неплохо сэкономить, однако следует хорошо подготовиться, чтобы не купить сломанную вещь. Неплохое место для того, чтобы найти потенциального продавца, – форумы астрономов. Цена за телескоп Рассмотрим некоторые ценовые категории: Около пяти тысяч рублей. Такой прибор будет соответствовать характеристикам, которые имеет телескоп, своими руками сделанный в домашних условиях. До десяти тысяч рублей. Этот аппарат наверняка будет больше подходить для качественного наблюдения ночного неба. Механическая часть корпуса и комплектация будет весьма скудной, и, может быть, вам придется потратиться на некоторые запасные части: окуляры, фильтры и т. д. От двадцати до ста тысяч рублей. К этой категории относятся профессиональные и полупрофессиональные телескопы.

Самодельные телескопы-рефлекторы любители астрономии строят, в основном, по системе Ньютона. Именно Исаак Ньютон примерно в 1670 году впервые создал телескоп-рефлектор. Это позволило ему избавиться от хроматических аббераций (они ведут к снижению чёткости изображения, к появлению на нём цветных контуров или полос, которых на реальном предмете нет) - главного недостатка существовавших тогда телескопов-рефракторов.

диагональным зеркалом – это зеркало направляет пучок отраженных лучей через окуляр к наблюдателю. Элемент, обозначенный цифрой 3, - окулярный узел.

Фокус главного зеркала и фокус окуляра, вставленного в окулярный тубус, должны совпадать. Фокус главного зеркала определяется как вершина конуса отраженных зеркалом лучей.

Диагональное зеркало изготавливается небольших размеров, оно является плоским и может иметь прямоугольную или же эллиптическую форму. Устанавливается диагональное зеркало на оптической оси главного зеркала (объектива), под углом 45° к ней.

Обычное бытовое плоское зеркало не всегда подходит для использования в качестве диагонального зеркала в самодельном телескопе – для телескопа нужна оптически более точная поверхность. Поэтому в качестве диагонального зеркала можно использовать плоскую поверхность плоско-вогнутой или плоско-выгнутой оптической линзы, если предварительно покрыть эту плоскость слоем серебра или алюминия.

Размеры плоского диагонального зеркала для самодельного телескопа определяются из графического построения конуса лучей, которые отражаются главным зеркалом. При прямоугольной или эллиптической форме зеркала стороны или оси соотносятся друг к другу как 1:1,4.

Объектив и окуляр самодельного телескопа-рефлектора монтируются в трубе телескопа взаимоперпендикулярно. Для крепления главного зеркала самодельного телескопа требуется оправа, деревянная или металлическая.

Для изготовления деревянной оправы главного зеркала самодельного телескопа-рефлектора Вы можете взять круглую или восьмигранную дощечку толщиной не менее 10 мм и на 15-20 мм больше, чем диаметр главного зеркала. Главное зеркало закрепляется на этой дощечке 4 отрезками толстостенной резиновой трубки, надетыми на шурупы. Для лучшей фиксации под головки шурупов можно подложить пластмассовые шайбы (само зеркало зажимать ими нельзя).

Труба самодельного телескопа изготавливается из отрезка металлической трубы, из нескольких склеенных между собой слоев картона. Можно также изготовить трубу металлическо-картонную.

Три слоя плотного картона следует склеить между собой столярным или казеиновым клеем, затем вставить картонную трубу в метталические кольца жесткости. Из металла также делают чашу для оправы главного зеркала самодельного телескопа и крышку трубы.

Длина трубы (тубуса) самодельного телескопа-рефлектора должна быть равна фокусному расстоянию главного зеркала, а внутренний диаметр трубы – 1,25 диаметра главного зеркала. Изнутри тубус самодельного телескопа-рефлектора следует «зачернить», т.е. оклеить матовой черной бумагой или же покрасить черной матовой краской.

Окулярный узел самодельного телескопа-рефлектора в самом простом исполнении может быть основан, как говорится, «на трении»: подвижная внутренняя трубка перемещается вдоль неподвижной внешней, обеспечивая необходимую фокусировку. Окулярный узел также может быть резьбовым.

Самодельный телескоп-рефлектор перед использованием необходимо установить на специальную подставку – монтировку. Вы можете приобрести как готовую заводскую монтировку, так и изготовить ее самостоятельно, из подручных материалов. Подробнее о видах монтировок для самодельных телескопов Вы сможете прочесть в наших следующих материалах.

Наверняка новичку будет незачем зеркальный аппарат с астрономической стоимостью. Это попросту, как говорится, пустая трата денег. Заключение В итоге мы познакомились с важной информацией о том, как сделать простой телескоп своими руками, и некоторыми нюансами покупки нового аппарата для наблюдения за звездами. Кроме способа, который мы рассмотрели, существуют и другие, но это уже тема для иной статьи. Вне зависимости от того, собрали ли вы телескоп в домашних условиях или приобрели новый, астрономия позволит вам погрузиться в неизведанный мир и получить впечатления, которых вы никогда раньше не испытывали

Труба из очковых стекол — это, по существу, простейший рефрактор с одиночной линзой вместо объектива. Лучи света, идущие от наблюдаемого предмета, собирает в трубе линзовый объектив. Чтобы уничтожить радужную окраску изображения хроматическую аберрацию, — используют две линзы из разных сортов стекла. Каждая поверхность у этих линз Должна иметь свою кривизну, а

все четыре поверхности — быть соосными. Изготовить такой объектив в любительских условиях практически невозможно. Достать же хороший, пусть даже небольшой, линзовый объектив для телескопа трудно.

Н0 есть другая система — отражательный телескоп. или рефлектор. В нем объективом служит вогнутое зеркало, где точную кривизну нужно придать только одной отражающей поверхности. Как же он устроен?

От наблюдаемого объекта (рис. 1) идут лучи света. Главное вогнутое (в простейшем случае — сферическое) зеркало 1, собирающее эти лучи, дает в фокальной плоскости изображение, которое рассматривается в окуляр 3. На пути пучка лучей, отраженных от главного зеркала, помещено небольшое плоское зеркальце 2, расположенное под углом 45 градусов к оптической оси главного. Оно отклоняет конус лучей под прямым углом, чтобы наблюдатель не загораживал головой открытый конец трубы 4 телескопа. Сбоку на трубе против диагонального плоского зеркальца прорезано отверстие для выхода конуса лучей и укреплен окулярный тубус 5. Несмотря на то. что отражающая поверхность обрабатывается с очень высокой точностью — отклонение от заданного размера не должно превышать 0,07 микрона (семь стотысячных миллиметра), — изготовление такого зеркала вполне доступно школьнику.

Сначала вырезать главное зеркало.

Главное вогнутое зеркало можно сделать из обычного зеркального, настольного или витринного стекла. Оно должно иметь достаточную толщину и быть хорошо отожженным. Плохо отожженное стекло сильно коробится при изменении температуры, а от этого форма поверхности зеркала искажается. Оргстекло, плексиглас и другие пластмассы не годятся вообще. Толщина зеркала должна быть чуть больше 8 мм, диаметр не более 100 мм. Под отрезок металлической трубы подходящего диаметра с толщиной стенок 02-- 2 ммнаносится кашица из порошка наждака или карборунда с водой. Из зеркального стекла вырезаются два диска. Вручную из стекла толщиной 8 - 10 мм можно вырезать диск Диаметром 100 мм примерно за час для облегчения работы можно применить станочек (рис. 2).

На основании 1 укреплена рама

3. Через середину ее верхней перекладины проходит ось 4, снабженная ручкой 5. На нижнем конце оси укреплено трубчатое сверло 2, на верхнем — груз б. Ось сверла можно снабдить подшипниками. Можно сделать моторный привод, тогда не придется крутить рукоятку. Станочек изготавливается из дерева или металла.

Теперь — шлифовка

Если положить один стеклянный диск на другой и, намазав соприкасающиеся поверхности кашицей из абразивного порошка с водой, двигать верхний диск к себе и от себя, в то же время равномерно вращая оба диска в противоположных направлениях, то они будут пришлифовываться один к другому. Нижний диск постепенно становится все более выпуклым, а верхний — вогнутым. Когда будет достигнут нужный радиус кривизны — что проверяется по глубине центра выемки — стрелке кривизны, — переходят к более мелким порошкам абразива (пока стекло не станет темно-матовым). Радиус кривизны определяется по формуле: Х =

где у — радиус главного зеркала; . Р — фокусное расстояние.

для первого самодельного телескопа диаметр зеркала (2у) выбирают равным 100-ь 120 мм; Ф — 1000--1200 мм. Вогнутая поверхность верхнего диска и будет отражающей. Но ее еще нужно отполировать и покрыть светоотражающим слоем.

Как получить точную сферу

Следующий этап — полировка.

Инструмент — все тот же второй стеклянный Диск. Его нужно превратить в полировальник, а для этого на поверхность нанести слой смолы с примесью канифоли (смесь придает полирующему слою большую твердость).

Варят смолу для полировальника так. В небольшой кастрюле на слабом огне расплавляется канифоль,. а затем в нее прибавляются небольшие кусочки мягкой смолы. Смесь размешивается палочкой. Определить заранее соотношение канифоли и смолы трудно. Хорошо остудив каплю смеси, нужно ее испробовать на твердость. Если ноготь большого пальца при сильном нажиме оставляет неглубокий след — твердость смолы близка к требуемой. доводить смолу до кипения и образования пузырей нельзя она будет непригодна для работы. На слое полировальной смеси прорезается сеть продольных и поперечных канавок для того, чтобы полирующее вещество и воздух свободно циркулировали во время работы и участки смолы Давали хороший контакт с Зеркалом. Полировка делается так же, как шлифовка: зеркало движется вперед и назад; кроме того, и полировальник и зеркало поворачивают понемногу в противоположных направлениях. Чтобы получить возможно более точную сферу, во время шлифовки и полировки очень важно соблюдать определенный ритм движений, равномерность в длине «штриха» и поворотах обоих стекол.

Вся эта работа делается на простом самодельном станочке (рис. 3), схожем по конструкции с гончарным. На основании из толстой доски помещен вращающийся деревянный столик с осью, проходящей сквозь основание. На этом столике укрепляется шлифовальщик или полировальник. Чтобы дерево не коробилось, его Пропитывают маслом, парафином или водоупорной краской.

На помощь приходит прибор Фуке

Можно ли, не обращаясь в специальную оптическую лабораторию, проверить, насколько точной получилась поверхность зеркала? Можно, если использовать прибор, сконструированный около ста лет тому назад знаменитым французским физиком Фуко. Принцип его работы удивительно прост, а точность измерения —- до сотых долей Микрояа. Известный советский ученый-оптик Д. Д. Максутов в юности сделал прекрасное параболическое зеркало (а параболическую поверхность получить гораздо труднее, чем сферу), используя для его испытания именно этот прибор, собранный из керосиновой лампы, куска полотна от пилы-ножовки и деревянных брусочков. Вот как он работает (рис. 4)

Точечный источник света И, — например, прокол в фольге освещенной яркой лампочкой, — находится вблизи центра кривизны О зеркала З. Зеркало слегка повернуто с таким расчетом, чтобы вершина конуса отраженных лучей О1 располагалась несколько в стороне от самого источника света. Эту вершину может пересекать тонкий плоский экран Н с прямолинейным краем — «нож Фуко». Поместив глаз позади экрана вблизи точки, где сходятся отраженные лучи, Мы увидим, что все зеркало как бы залито светом. Если поверхность зеркала точно сферическая, то при пересечении экраном вершины конуса, все зеркало начнет равномерно гаснуть. А сферическая поверхность (не сфера) не - может собрать все лучи в одной точке. Часть из них пересечется перед экраном, часть — сзади него. Тогда мы видим рельефную теневую картину» (рис. 5), по которой можно узнать, какие отклонения от сферы есть на поверхности зеркала. Изменяя определенным образом режим полировки, их можно устранить.

О чувствительности теневого метода можно судить по такому опыту. Если приложить к поверхности зеркала на несколько секунд палец и потом посмотреть, пользуясь теневым прибором; то на том месте, где был приложен палец, будет виден бугор с довольно

заметной тенью, постепенно исчезающей. Тёневой прибор отчетливо показал ничтожнейшее возвышение, образовавшееся от нагревания участка зеркала при соприкосновении с пальцем. Если «нож Фуко гасит все зеркало одновременно значит поверхность его — действительно точная сфера.

Еще несколько важных советов

Когда зеркало отполировано и его поверхность точно доведена до заданной формы, отражающую вогнутую поверхность нужно алюминировать или посеребрить. Отражающий слой алюминия очень долговечен, но покрыть им зеркало можно только на специальной установке под вакуумом. Увы, у любителей таких установок нет. Зато посеребрить зеркало можно и дома. Жаль только, что серебро довольно быстро тускнеет и светоотражающий слой приходится возобновлять.

Хорошее главное зеркало для телескопа — основное. Плоское же диагональное зеркало в небольших телескопах-рефлекторах может быть заменено призмой с полным внутренним отражением, применяемой, например, в призматических биноклях. Обычные плоские зеркальца, употребляемые в быту, для телескопа не годятся.

Окуляры можно подобрать от старого микроскопа или геодезических приборов. В крайнем случае, окуляром может служить и одинарная двояковыпуклая или плосковыпуклая линза.

Труба (тубус) и вся установка телескопа могут быть выполнены в самых различных вариантах — от простейшего, где материалом служат картон, дощечки и деревянные брусочки (рис. 6), до весьма совершенных. с Деталями и специально отлитыми выточенными на токарном станке. Но главное— прочность, устойчивость трубы. Иначе, особенно при больших увеличениях, изображение будет дрожать и навести окуляр на резкость будет трудно, а работать с телескопом неудобно

Теперь главное — терпение

Сделать телескоп, дающий очень хорошие изображения при увеличениях до 150 раз и более, может школьник 7—8-го класса. Но эта работа требует большого терпения, настойчивости и аккуратности. Зато какую радость и гордость должен чувствовать тот, кто знакомится с космосом при помощи точнейшего оптического прибора — телескопа, сделанного своими руками!

Наиболее тяжелая для самостоятельного производства деталь - основное зеркало. Рекомендуем вам новый довольно простой метод его изготовления, для которого нет необходимости сложного оборудования и специальных станков. Правда, вам нужно строго выполнять все советы сообразно тонкой шлифовке и в особенности по полировке зеркала. Лишь при данном условии вы можете выстроить телескоп, кой никак-никак не хуже промышленного. Именно данная деталь, вызывает более всего затруднений. Поэтому обо всех остальных подробностях мы расскажем совсем кратко.

Заготовка для основного зеркала – диск из стекла толщиной 15-20мм.

Можно применить линзу от конденсора фотоувеличителя, которые нередко продаются в торговых центрах фототоваров. Или склеить эпоксидным клеем из стеклянных тонких дисков, которые легко вырезать алмазным либо роликовым стеклорезом. Потрудитесь, чтоб клеевое соединение было минимальной толщины. "Слоеное" зеркало имеет некоторые достоинства перед сплошным - оно не в такой мере подвержено короблению при изменениях температуры окружающей среды, а следственно, дает изображение более лучшего качества.

Диск для шлифовки может быть стеклянным, железным либо цементно-бетонным. Диаметр диска шлифовальника должен быть равен поперечнику зеркала, а его толщина 25-30мм. Рабочая поверхность шлифовальника должна быть стеклянной либо, что еще лучше, из отверженной эпоксидной смолы слоем 5-8мм. Потому, если у Вас получилось выточить или выбрать на металлоломе пригодный диск, либо отлить его из цементного раствора (1 часть цемента и 3 доли песка), то нужно оформить его рабочую сторону, как показано на рисунке 2.

Абразивные порошки для шлифовки могут быть из карборунда, корунда, наждака либо из кварцевого песка. Последний полирует медленно, но несмотря на все вышесказанное качество отделки приметно больше. Зерна абразива (его будет нужно 200-300 г) для грубой шлифовки, когда нам необходимо будет сделать в заготовке зеркала нужный радиус кривизны, должны быть размером 0,3-0,4мм. Не считая этого, потребуются более мелкие порошки с размерами зерен.

Если порошки в готовом виде приобрести не представляется возможным, то вполне возможно приготовить их самому, раскрошив в ступке маленькие кусочки шлифовального абразивного круга.

Грубая шлифовка зеркала.

Закрепите шлифовальник на устойчивой тумбе либо столе рабочей стороной кверху. Надлежит побеспокоиться о кропотливой уборке вашего домашнего шлифовального "станка" опосля замены абразивов. Для чего на его поверхности надлежит уложить слой линолеума либо резины. Совсем удобен особый поддон, который совместно с зеркалом после работы потом можно будет убрать со стола. Грубая шлифовка делается достоверным "дедовским" методом. Смешайте абразив с водой в соотношении 1:2. Размажьте по поверхности шлифовальника около 0,5 см.куб. получившейся кашицы, положите болванку зеркала внешней стороной книзу и начинайте шлифовку. Зеркало держите 2-мя руками, это предохранит его от падения, а верное положение рук даст быстрое и точное получение нужного радиуса кривизны. Перемещения при шлифовке (штришки) делайте в направлении диаметра, равномерно вертя зеркало и шлифовальник.

Постарайтесь с самого начала приучить себя к последующему ритму работы: на каждые 5 штрихов 1 разворот зеркала в руках на 60°. Темп работы: приблизительно 100 штрихов в минутку. Двигая зеркало вперед и обратно по поверхности шлифовальника, пытайтесь удерживать его в состоянии стабильного равновесия на линии окружности шлифовальника. По мере шлифовки хруст абразива и интенсивность шлифовки уменьшается, плоскость зеркала и шлифовальника загрязняются отработанным абразивом и частичками стекла с водой - шламом. Его необходимо временами смывать либо обтирать увлажненной губкой. Прошлифовав 30 мин., проверьте величину углубления при помощи металлической линейки и лезвий безопасной бритвы. Зная толщину и количество лезвий, которое проходит в промежуток между линейкой и центральной частью зеркала, вы легко сможете замерить получившееся углубление. Если оно недостаточно, продолжайте шлифовку, покуда не получите необходимое значение (в нашем случае - 0,9мм). Ежели шлифующий порошок хорошего качества, то грубую шлифовку можно совершить за 1-2 часа.

Тонкая шлифовка.

При тонкой отделке поверхности зеркала и шлифовальника с высочайшей точностью притираются друг к другу по сферической поверхности. Шлифовка делается в несколько заходов все более мелкими абразивами. Если при грубой шлифовке центр давления располагался поблизости от краёв шлифовальника, то при тонкой он должен быть не более чем на 1/6 диаметра заготовки от его центра. Временами необходимо совершать как бы ошибочные перемещения зеркалом по поверхности шлифовальника, то налево, то направо. Тонкую шлифовку начинайте лишь после капитальной уборки. Нельзя допускать, чтоб вблизи от зеркала были большие, твердые частички абразива. Они имеют неприятную способность "самостоятельно" просачиваться в зону шлифовки и производить царапинки. Поначалу применяйте абразив с размером частиц 0,1-0,12 мм. Чем мельче абразив, тем более меньшими дозами его надлежит прибавлять. В зависимости от вида абразива нужно опытным путем подобрать его концентрацию с водой в суспензии и значение порции. Время ее выработки (суспензии), а также периодичность очищения от шлама. Невозможно допустить, чтоб зеркало прихватывало (застревало) на шлифовальнике. Абразивную суспензию удобно держать в бутылочках, в пробки которых вставлены пластиковые трубочки диаметром 2-3 мм. Это облегчит ее нанесение на рабочую поверхность и предохранит от засорения большими частичками.

Ход шлифовки проверяйте просмотром зеркала на просвет после промывки водой. Большие выколки, оставшиеся после топорной шлифовки, должны полностью исчезнуть, матовость обязана быть совершенно равномерной - только в данном случае работу с этим абразивом можно полагать оконченной. Полезно поработать еще лишних 15-20 мин., чтоб с гарантией ошлифовать не только незамеченные выколки, но и слой микротрещин. После этого промойте зеркало, шлифовальник, поддон, стол, руки и переходите к шлифовке еще одним, наиболее маленьким абразивом. Абразивную суспензию прибавляйте равномерно, по нескольку капель, предварительно взбалтывая бутылочку. Ежели абразивной суспензии прибавить слишком мало либо если есть огромные отклонения от сферической поверхности, то зеркало может "прихватывать". Поэтому накладывать зеркало на шлифовальник и делать 1-ые перемещения нужно совсем осторожно, без большого нажима. В особенности щекотливо "прихватывание" зеркала на последних стадиях тонкой шлифовки. Ежели таковая угроза произошла, то ни в коем случае никак не нужно торопиться. Потрудитесь равномерно (за 20 мин.) подогреть зеркало с шлифовальником под струей теплой воды до температуры 50-60°, а потом охладите их. Тогда зеркало и шлифовальник "разъедутся". Можно постучать древесным бруском по краю зеркала в направленности его радиуса, соблюдая все меры осторожности. Не забывайте, что стекло весьма непрочный и малотеплопроводный материал и при весьма великой разности температур оно растрескивается, как это происходит иногда со стеклянным стаканом, если в него налить кипяток. Контроль качества на завершающих шагах тонкой шлифовки надлежит производить при помощи мощной лупы либо микроскопа. На завершающих стадиях тонкой шлифовки резко увеличивается вероятность появления царапин.

Поэтому перечислим меры предостережения от появления их:
производите кропотливую очистку и мытье зеркала, поддона, рук;
делайте влажную уборку в рабочем помещении после каждого подхода;
старайтесь снимать зеркало со шлифовальника как можно реже. Прибавлять абразив необходимо, сдвинув зеркало в сторону на половину поперечника, равномерно распределяя его сообразно поверхности шлифовальника;
положив зеркало на шлифовальник, нажмите на него, при этом большие частички, случайно попавшие на шлифовальник, раздавятся и никак не оцарапают плоскость стеклянной болванки.
Отдельные царапинки либо ямки никак не испортят качество изображения. Однако если их немало, то они понизят контрастность. После тонкой шлифовки зеркало делается полупрозрачным и отлично отражает лучи света, падающие под углом 15-20°. Удостоверившись, что это так, ошлифуйте его еще в отсутствии всякого нажима, быстро вертя для выравнивания температуры от тепла рук. Если на тонком слое самого мелкого абразива зеркало ходит просто, с легеньким присвистом, напоминающим свист через зубы, то это означает, что его поверхность весьма близка к сферической и отличается от нее только на сотые доли микрона. Наша задача в последующем при операции полировки никак не попортить ее.

Полировка зеркала

Отличие полировки зеркала от тонкой шлифовки в том, что она производится на мягком материале. Высокоточные оптические поверхности получают полировкой на полировальниках из смолы. Причём чем тверже смола и чем меньше ее слой на поверхности жесткого шлифовальника (он используется как основа полировальника), тем более точной получается поверхность сферы на зеркале. Для изготовления смоляного полировальника сначала нужно приготовить битумно-канифольную смесь в растворителях. Для этого измельчите на мелкие кусочки 20 г нефте-битума марки IV и 30 г канифоли, смешайте их и высыпьте в бутылочку емкостью 100 см.куб.; после чего залейте в нее 30 мл бензина и 30 мл ацетона и закройте пробкой. Для ускорения растворения канифоли и битума периодически взбалтывайте смесь, и через несколько часов лак будет готов. Слой лака нанесите на поверхность шлифовальника и дайте ему высохнуть. Толщина этого слоя после высыхания должна быть 0,2-0,3 мм. После этого наберите лак пипеткой и по одной капле капайте на высохший слой, не допуская слияния капель. Что весьма важно равномерно распределять капли. После высыхания лака полировальник готов к использованию.

Затем приготовьте полирующую суспензию - смесь полирующего порошка с водой в соотношении 1:3 или 1:4. Ее также удобно хранить в бутылочке с пробкой, снабженной полиэтиленовой трубочкой. Теперь у вас есть все, чтобы отполировать зеркало. Смочите поверхность зеркала водой и капните на нее несколько капель полирующей суспензии. Потом осторожно наложите зеркало на полировальник и подвигайте. Движения при полировке такие же, как и при тонкой шлифовке. А вот надавливать на зеркало можно только при его ходе вперед (сдвиг с полировальника), возвращать его в исходное положение необходимо без всякого давления, держась пальцами за его цилиндрическую часть. Полировка будет идти почти без шума. Если в комнате тихо, можно услышать шум, напоминающий дыхание. Полируйте не спеша, не слишком усердно нажимая на зеркало. Важно установить такой режим, при котором зеркало под нагрузкой (3-4 кг) идет вперед довольно туго, а обратно легко. Полировальник как бы "привыкает" к такому режиму. Число штрихов 80-100 в одну минуту. Время от времени делайте неправильные движения. Посматривайте за состоянием полировальника. Его рисунок должен быть равномерным. Если нужно, подсушите его и накапайте в нужных местах лак, предварительно хорошенько взболтав бутылочку с ним. Процесс полировки следует контролировать на просвет, при помощи сильной лупы или микроскопа с увеличением 50-60 раз.

Поверхность зеркала должна полироваться равномерно. Весьма плохо, если быстрее полируется средняя зона зеркала или у краёв. Такое может произойти, если поверхность полировальника не сферическая. Этот дефект нужно немедленно устранить, добавив в пониженные места битумно-канифольный лак. Через 3-4 часа работа обычно подходит к концу. Если рассмотреть края зеркала через сильную лупу или микроскоп, то Вы уже не увидите ямок и мелких царапин. Полезно поработать еще 20-30 минут, уменьшив давление в два-три раза и делая остановки на 2-3 минуты через каждые 5 минут работы. Это обеспечивает выравнивание температуры от тепла трения и рук и приобретение зеркалом более точной формы сферической поверхности. Итак, зеркало готово. Теперь о конструктивных особенностях и деталях телескопа. Виды телескопа показана на эскизах. Материалов вам потребуется немного, и все они доступны и относительно дешевы. В качестве вторичного зеркала можно применить призму полного внутреннего отражения от большого бинокля, линзу или светофильтр от фотоаппарата, на плоские поверхности которых нанесено отражающее покрытие. В качестве окуляра телескопа можете использовать окуляр от микроскопа, короткофокусный объектив от фотоаппарата или одиночные плоско-выпуклые линзы с фокусным расстоянием от 5 до 20 мм. Следует особо отметить, что оправы основного и вторичного зеркал нужно делать весьма аккуратно.

От их правильной регулировки зависит качество изображения. Зеркало в оправе должно быть закреплено с небольшим зазором. Нельзя допустить, чтобы зеркало было зажато в радиальном или в осевом направлении. Для того чтобы телескоп обеспечивал изображение высокого качества, надо, чтобы его оптическая ось совпадала с направлением на объект наблюдения. Это регулирование производится изменением положения вторичного вспомогательного зеркала, а затем регулировочными гайками оправы основного зеркала. Когда телескоп будет собран, надо выполнить отражающие покрытия на рабочих поверхностях зеркал и установить их. Проще всего покрыть зеркало серебром. Это покрытие отражает более 90% света, но со временем тускнеет. Если освоить метод химического осаждения серебра и предпринимать меры против потускнения, то для большинства астрономов-любителей это станет самым наилучшим решением проблемы.

Предназначен для того, чтобы с его помощью наблюдать далёкие небесные объекты. Если перевести это слово с греческого языка на русский, оно будет означать «наблюдаю далеко».

Начинающие астрономы-любители, безусловно, интересуются тем, как устроен телескоп и какие виды этих оптических приборов существуют. Новичок, придя в магазин оптики, часто спрашивает продавца: «А вот этот телескоп во сколько раз увеличивает?» Кому-то следующее утверждение может показаться удивительным, но сама постановка вопроса является некорректной.

Дело не в увеличении?

Есть люди, которые думают, что чем больше увеличивает телескоп, тем «круче». Кто-то считает, что он приближает к нам удалённые объекты. И то, и другое мнение является ошибочным. Основная задача этого оптического инструмента - собрать излучение волн электромагнитного спектра, к которым относится и свет, видимый нами. Кстати, в понятие электромагнитного излучения входят и другие волны (радио-, инфракрасные, ультрафиолет, рентген и т. д.). Современные телескопы могут улавливать все эти диапазоны.

Итак, суть функций телескопа заключается не в том, во сколько раз он увеличивает, а в том, какое количество света он может собрать. Чем больше света соберёт линза или зеркало, тем чётче будет нужная нам картинка.

Для создания хорошего изображения оптическая система телескопа концентрирует световые лучи в одной точке. Она называется фокусом. Если свет не будет сфокусирован в ней, мы получим размытую картинку.

Какими бывают телескопы?

Как устроен телескоп? Различают несколько основных их видов:

  • . В конструкции рефрактора используют только линзы. Его работа основана на преломлении световых лучей;
  • . Они полностью состоят из зеркал, при этом, схема телескопа выглядит так: объектив - это главное зеркало, а есть ещё и вторичное;
  • или смешанного типа. Они состоят как из линз, так и из зеркал.

Как работают рефракторы

Объектив любого рефрактора выглядит в виде двояковыпуклой линзы. Её задача - сбор световых лучей и концентрация их в одной точке (фокусировка). Увеличение исходного изображения мы получаем через окуляр. Линзы, которые используют в современных моделях телескопов, являются сложными оптическими системами. Если ограничиться применением только одной крупной линзой, выпуклой с двух сторон, это чревато сильными погрешностями получаемого изображения.

Во-первых, изначально лучи света не могут чётко собраться в одну точку. Такое явление получило название сферической аберрации, в результате которой невозможно получение картинки с одинаковой резкостью на всех её участках. При использовании наведения можно увеличить резкость в центре изображения, но мы получим размытые края - и наоборот.

Кроме сферической, рефракторы также «грешат» хроматической аберрацией. Искажение цветового восприятия происходит потому, что в состав света, исходящего от космических объектов, входят лучи разного цветового спектра. Когда они проходят сквозь объектив, то не могут преломляться одинаково, следовательно, рассеиваются по разным участкам оптической оси инструмента. Результатом становится сильное искажение цвета получаемого изображения.

Специалисты-оптики хорошо научились «бороться» с аберрациями разного рода. С этой целью они изготавливают оптические системы рефракторов, состоящие из разных линз. Таким образом коррекция картинки становится реальной, но усилий подобная работа требует немалых.

Принцип работы рефлекторов

Появление телескопов-рефлекторов в астрономии неслучайно, так как хроматическая аберрация у «зеркалок» отсутствует вовсе, а сферические искажения можно откорректировать, изготовив главное зеркало в форме параболы. Такое зеркало получило название параболического. Вторичное зеркальце, которое тоже входит в его конструкцию, предназначено для того, чтобы отклонять лучи света, отражаемые главным зеркалом и выводить картинку в верном направлении.

Именно главное зеркало, имеющее форму параболы, обладает уникальным свойством чётко сводить все световые лучи в один фокус.

Зеркально-линзовые телескопы

В оптическую конструкцию зеркально-линзовых телескопов входят и линзы, и зеркала одновременно. В качестве объектива здесь служит зеркало сферической формы, а линзы предназначены для устранения всех возможных аберраций. Если сравнить зеркально-линзовые телескопы с рефракторами и рефлекторами, можно сразу обратить внимание на то, что у катадиоптриков короткая и компактная труба. Это обусловлено системой многократного переотражения световых лучей. Если использовать разговорный язык астрономов-любителей, фокус у таких телескопов словно находится в «сложенном состоянии». Благодаря компактности и лёгкости катадиоптриков они пользуются высокой популярностью в астрономической среде, однако стоят такие телескопы гораздо дороже, чем простой рефрактор или обычная «зеркалка» системы Ньютона.

Невероятно интересно наблюдать за красотой небесных тел, особенно ночью, когда взору открыты звезды, планеты и разные галактики. Если вы хотите приобщиться к тем, кто любит астрономию и увидеть все светила, то вам нужно приобрести телескоп. С чего начать? Как выбрать телескоп для начинающих? Для этого вам нужно не так уж и много – подходящий оптический прибор, карта звездного неба и сумасшедший интерес к этой загадочной науке. Сегодня вы узнаете, что такое телескоп, рассмотрите его разновидности, на какие параметры следует обратить внимание при выборе прибора, который откроет для вас мир ярких звезд и созвездий.

Основные вопросы

Как выбрать телескоп? Перед покупкой телескопа постарайтесь понять, что вы хотите получить от данного приобретения. Рекомендуем составить список вопросов и постараться на них ответить, прежде чем отправляться в магазин. Нужно дать ответ на следующие вопросы:

  • Какие объекты вы хотите увидеть на небе?
  • Где вы планируете использовать прибор – дома или на улице?
  • Хотите ли вы в дальнейшем заниматься астрофотографией?
  • Сколько вы готовы потратить на свое увлечение?
  • За какими именно небесными светилами вам хотелось бы наблюдать – ближайшие планеты Солнечной системы или самые далекие галактики и туманности?

Очень важно дать правильный ответ на эти вопросы. Прибор стоит немалых денег, и вам нужно правильно определиться с конкретной моделью, чтобы купить такой телескоп, который полностью отвечает вашему опыту и личным предпочтениям.

Принцип действия и устройство телескопа

Такой оптический прибор является довольно сложным устройством, благодаря которому можно увидеть даже самые отдаленные предметы (земные или астрономические) в многократном увеличительном стекле. Его конструкция состоит из трубы, где на одном конце (ближе к небу) встроена светособирающая линза или вогнутое зеркало – объектив. На другом — находится так называемый окуляр, через который мы и просматриваем отдаленное изображение. О том, какой телескоп лучше, мы поговорим немного позже.

Конструкция телескопа оснащена такой дополнительной техникой:

  • Поисковик для обнаружения заданных астрономических объектов.
  • Светофильтры, которые блокируют сильное сияние небесных светил.
  • Корректирующие пластины или диагональные зеркала, способные поворачивать видимую картинку, которую линза передает “вверх ногами”.

Телескопы профессионального использования, которые оснащены возможностями астрофотографирования и видеосъемкой, могут быть укомплектованы следующей аппаратурой:

  • Система поиска GPS.
  • Сложное электронное оборудование.
  • Электродвигатель.

Разновидности телескопов

Сейчас мы ознакомим вас с основными видами оптических приборов, которые различны между собой по типу конструкции, наличию составляющих и дополнительных элементов.

Рефракторы (линзовые)

Данный вид телескопа легко узнать по довольно простой конструкции, которая напоминает подзорную трубу. На одной оси находятся объектив и окуляр, а увеличительный объект передается по прямому спектру – так же, как и в самых первых телескопах, произведенных много лет назад.

Такие преломляющие оптические аппараты могут собрать отраженный свет небесных объектов с помощью 2-5 увеличительно-выпуклых линз, расположенных в двух концах длинной трубы конструкции.

Как выбрать телескоп для любителя астрологии?

Линзовый аппарат отлично подойдет новичкам для наблюдений за жизнью небесных объектов. Линзовые телескопы позволяют хорошо рассмотреть как наземные, так и небесные объекты, выходящие за пределы нашей Солнечной системы. При использовании рефракторного телескопа можно заметить то, что при пойманном объективом свете может теряться четкость изображения, а при многократном увеличении можно наблюдать немного размытые объекты.

Важно! Пользоваться таким прибором лучше на открытой местности, в идеале – за городом, где отсутствует засветка неба посторонними лучами.

Достоинства:

  • Просты в использовании и не нуждаются в дополнительном дорогом обслуживании.
  • Герметичная конструкция прибора оберегает аппарат от попадания пыли и влаги.
  • Стойкие к перепадам температуры
  • Могут выдавать четкую и яркую картинку ближайших астрономических объектов.
  • Имеют долгий срок эксплуатации.
Недостатки:
  • Очень габаритные и тяжелые (вес некоторых телескопов достигает 20 кг).
  • Максимальный диаметр увеличительной линзы – 150 мм.
  • Не подходит для городских наблюдений.

В зависимости от типа оптических линз, телескопы делят на следующие виды:

  • Ахроматические – оснащены малым и средним оптическим увеличением, но показывают плоскую картинку.
  • Апохроматические – выдают выпуклое изображение, но зато исключают дефекты нечеткого контура и появление вторичного светового спектра.

Рефлекторы (зеркальные)

Как выбрать телескоп для наблюдений? Работа такого телескопа заключается в улавливании и передаче светового луча с помощью двух вогнутых зеркал: первое — находится внутри трубы, второе – преломляет картинку под углом, направляя ее на боковую линзу.

В отличие от рефлекторного аппарата, таким телескопом можно изучать глубокую область космоса и получать более качественное изображение удаленных галактик. Так как зеркала стоят дешевле линз, то и цена будет соответствующей – низкой.

Важно! Начинающему пользователю будет непросто управлять сложными техническими настройками и коррективами такого телескопа. Именно поэтому рекомендуем потренироваться сначала на рефлекторе, а позже перейти на более высокий уровень профессионала.

Плюсы:

  • Простота конструкции телескопа.
  • Компактный размер и небольшой вес.
  • Хорошо улавливает приглушенный свет самых далеких космических объектов.
  • Большой диаметр увеличительной апертуры (от 250–400 мм), которая передают более контрастную и яркую картинку, без каких-либо дефектов.
  • Приемлемая цена по сравнению с дорогостоящими рефракторами

Минусы:

  • Требует особого опыта и времени на настройку оптической системы.
  • Внутрь конструкции могут попасть частички пыли и грязи.
  • Не любит перепадов температур.
  • Не подходит для просмотра наземных и ближайших объектов Солнечной системы.

Катадиоптрики (зеркально-линзовые)

Линзы и зеркала – составляющие элементы объектива катадиоптрических телескопов. Данный аппарат включает в себя все достоинства и максимально корректирует дефекты с помощью специальных пластин. С таким прибором можно не только получать самую четкую картинку ближних и дальних небесных светил, но делать качественные фотографии увиденного объекта.

Плюсы:

  • Небольшие размеры и транспортабельность.
  • Передают самое качественное изображение из всех существующих телескопов.
  • Оснащены апертурой до 400 мм.

Минусы:

  • Дорогостоящие.
  • Скопление воздуха внутри телескопической трубы.
  • Сложная конструкция и управление.

Параметры выбора телескопа

Пришло время рассмотреть основные характеристики современных оптических приборов, чтобы понять, как выбрать телескоп для начинающих и не только.

Апертура (диаметр объектива)

Является главным критерием выбора любого телескопа. От апертуры объектива зависит способность зеркала или линзы улавливать свет: чем выше эта характеристика, тем большее количество отраженных лучей попадет в объектив. Благодаря этому вы сможете увидеть качественное изображение и даже уловить слабую видимость самых дальних космических объектов.

При выборе апертуры, исходя из своих целей, ориентируйтесь на следующие цифры:

  • Чтобы разглядеть четкие детали картинки ближних планет или спутников, достаточно телескопа с диаметром до 150 мм. Для городских условий можно уменьшить этот показатель до 70–90 мм.
  • Рассмотреть более отдаленные небесные объекты сможет аппарат с апертурой более 200 мм.
  • Если вы хотите видеть ближние и дальние небесные светила за городом, то можете попробовать самую большую величину оптических линз – до 400 мм.

Фокусное расстояние

Расстояние от небесных тел до точки в окуляре называют фокусным расстоянием. Именно здесь все световые лучи образуют пучок единого свечения. Этот показатель диктует степень увеличения и четкость видимой картинки – чем он выше, тем лучше мы увидим интересующее небесное светило. Чем выше фокус, тем длиннее сам телескоп, поэтому такие габариты могут повлиять на компактности его хранения и транспортировки.

Важно! Короткофокусный прибор можно держать дома, а вот длиннофокусный – в более просторном помещении, например, во дворе дома или на даче.

Кратность увеличения

Данный показатель легко определить, поделив фокусное расстояние на характеристику вашего окуляра. Так, если диаметр телескопа 800 мм, а по окуляру оно равно 16, то вы сможете получить 50-кратное оптическое увеличение.

Важно! Если вы установите слабый или более мощный окуляр, то сможете самостоятельно корректировать увеличение различных объектов.

Сегодня производители предлагают различную оптику – от самой низкой (4–40мм) до самой высокой, которая может удвоить фокус оптического прибора.

Тип монтировки

Это не что иное, как подставка для телескопа. Ее прямое предназначение – удобство в использовании телескопа.

Любительский и полупрофессиональный комплект состоит из 3 основных видов таких подвижных опор:

  • Азимутальная – довольно простая подставка, смещающая аппарат по горизонтали и вертикали. Такой опорой комплектуют рефракторы и катадиоптрики. Для астрофотографирования азимутальная монтировка не подходит, так как не способна поймать четкое изображение объекта.
  • Экваториальная – имеет внушительный вес и габариты, но зато отлично находит нужное светило по заданным координатам. Данный вид монтировки подходит для рефлекторов, которые улавливают самые отдаленные галактики. Экваториальная опора очень популярна среди любителей астрофотографии.
  • Система Домсона – нечто среднее между обычной дешевой азимутальной подставкой и крепкой экваториальной конструкцией. Очень часто ее добавляют в комплектацию с мощными рефлекторами.

  • Не стоит переплачивать за габариты телескопа. Он должен быть таким, чтобы вы смогли самостоятельно его переносить и транспортировать. Самый лучший телескоп для дома должен быть максимально компактен и удобен в использовании.
  • Если вы будете перевозить аппарат в машине, то нужно убедиться в том, что размеры трубы разрешают поместить его в салоне или в багажнике. В ином случае — вам придется ремонтировать не только телескоп, но и свой грузовик.
  • Заранее выберите место для просмотра небесных объектов. Лучшим вариантом будет место, которое находится за пределами города. Если у вас нет транспорта, то остановитесь на ближайшей смотровой площадке с отсутствием ближайших жилых массивов и других зданий.
  • Если вы — новичок, то не тратьте сразу весь накопленный бюджет. Приобретение окуляров, мощных фильтров и другого оборудования – очень дорогой процесс.
  • Старайтесь наблюдать за небесными светилами как можно чаще. Так, если каждый день пользоваться телескопом и рассматривать одни и те же объекты, то со временем можно увидеть их новые изменения и перемещения.
  • Если вашей целью является изучение самых дальних галактик и туманностей, то купите рефлектор с диаметром от 250 мм, дополненный азимутальной подставкой.
  • Любителям астрофотографирования не обойтись без катадиоптрического оптического прибора с мощной апертурой (400 мм) и самой длинной фокусировкой от 1000 мм. Можно добавить к комплекту экваториальную монтировку с автоматическим приводом.
  • Своему ребенку можно подарить бюджетный и простой в использовании телескоп-рефрактор из детской серии, оснащенный апертурой 70 мм на азимутальной опоре. А дополнительный адаптер, поможет сделать эффектные фото Луны и наземных объектов.

Видеоматериал

Мы очень надеемся, что прочитав нашу статью, вы стали знатоком в области телескопии, а выбрать хороший телескоп для дома не будет для вас проблемой. Наблюдать за Луной, звездами, планетами, галактиками, интересными туманностями крайне захватывающе и необычайно интересно! Желаем вам новых открытий и долгой службы вашего телескопа!

Статьи по теме