Исследовательская работа: "Фракталы в математике". Курсовая работа: Фракталы Фракталы в реальном мире объект исследования

Мы уже писали о том, как абстрактная математическая теория хаоса нашла применения в самых разных науках – от физики до экономики и политологии. Сейчас мы приведем еще один подобный пример – теорию фракталов. Строгого определения понятия «фрактал» нет даже в математике. Что-то там такое они, конечно, говорят. Но «простому человеку» этого не понять. Как вам, например, такая фраза: «Фрактал – это множество, обладающее дробной хаусдорфовой размерностью, которая больше топологической». Тем не менее, они, фракталы, окружают нас и помогают понять многие явления из разных сфер жизни.

С чего все началось

Фракталами долго никто кроме профессиональных математиков не интересовался. До появления компьютеров и соответствующего софта. Все изменилось в 1982 году, когда в свет вышла книга Бенуа Мандельброта «Фрактальная геометрия природы». Эта книга стала бестселлером, не столько по причине простого и понятного изложения материала (хотя это утверждение весьма относительно – человек, не имеющий профессионального математического образования в ней ничего не поймет), сколько из-за приведенных компьютерных иллюстраций фракталов, которые, действительно, завораживают. Давайте посмотрим на эти картинки. Они, правда, того стоят.

И таких картинок множество. Но какое все это великолепие имеет отношение к нашей реальной жизни и к тому, что окружает нас в природе и повседневном мире? Оказывается, самое прямое.

Но сначала скажем несколько слов о самих фракталах, как геометрических объектах.

Что такое фрактал, если говорить по-простому

Первое. Как они, фракталы, строятся. Это довольно сложная процедура, использующая специальные преобразования на комплексной плоскости (что это такое – знать не надо). Важно только то, что эти преобразования являются повторяющимися (происходят, как говорят в математике, итерациями). Вот в результате этого повторения и возникают фракталы (те, которые вы видели выше).

Второе. Фрактал является самоподобной (точно или приблизительно) структурой. Это значит следующее. Если вы поднесете к любой из представленных картинок микроскоп, увеличивающий изображение, например, в 100 раз, и посмотрите на фрагмент попавшего в окуляр кусочка фрактала, то вы обнаружите, что он идентичен исходному изображению. Если вы возьмете более сильный микроскоп, увеличивающий изображение в 1000 раз, то вы обнаружите, что кусочек попавшего в окуляр фрагмента предыдущего изображения имеет ту же самую или очень похожую структуру.

Из этого следует крайне важный для последующего вывод. Фрактал имеет крайне сложную структуру, которая повторяется на разных масштабах. Но чем больше мы забираемся вглубь его устройства, тем сложнее он становится в целом. И количественные оценки свойств первоначальной картинки могут начинать меняться.

Вот теперь мы оставим абстрактную математику и перейдем к окружающим нас вещам – таким, казалось бы, простым и понятным.

Фрактальные объекты в природе

Береговая линия

Представьте себе, что вы с околоземной орбиты фотографируете некий остров, например Британию. Вы получите такое же изображение, как на географической карте. Плавное очертание берегов, со всех сторон – море.

Узнать протяженность береговой линии очень просто. Возьмите обычную нитку и аккуратно выложите ее по границам острова. Потом, измеряйте ее длину в сантиметрах и, полученное число, умножайте на масштаб карты – в одном сантиметре сколько-то там километров. Вот и результат.

А теперь следующий эксперимент. Вы летите на самолете на высоте птичьего полета и фотографируете береговую линию. Получается картина, похожая на фотографии со спутника. Но эта береговая линия оказывается изрезанной. На ваших снимках появляются небольшие бухты, заливы, выступающие в море фрагменты суши. Все это соответствует действительности, но не могло быть увиденным со спутника. Структура береговой линии усложняется.

Допустим, прилетев домой, вы на основании своих снимков сделали подробную карту береговой линии. И решили измерить ее длину с помощью той самой нитки, выложив ее строго по полученным вами новым данным. Новое значение длины береговой линии превысит старое. И существенно. Интуитивно это понятно. Ведь теперь ваша нитка должна огибать берега всех заливов и бухт, а не просто проходить по побережью.

Заметьте. Мы уменьшили масштаб, и все стало намного сложнее и запутаннее. Как у фракталов.

А теперь еще одна итерация. Вы идете по тому же побережью пешком. И фиксируете рельеф береговой линии. Выясняется, что берега заливов и бухт, которые вы снимали с самолета, вовсе не такие гладкие и простые, как вам казалось на ваших снимках. Они имеют сложную структуру. И, таким образом, если вы нанесете на карту вот эту «пешеходную» береговую линию, длина ее вырастет еще больше.

Да, бесконечностей в природе не бывает. Но совершенно понятно, что береговая линия – это типичный фрактал. Она остается себе подобной, но ее структура становится все более и более сложной при ближайшем рассмотрении (вспомните про пример с микроскопом).

Это воистину удивительное явление. Мы привыкли к тому, что любой ограниченный по размерам геометрический объект на плоскости (квадрат, треугольник, окружность) имеет фиксированную и конечную длину своих границ. А здесь все по-другому. Длина береговой линии в пределе оказывается бесконечной.

Дерево

А вот представим себе дерево. Обычное дерево. Какую-нибудь развесистую липу. Посмотрим на ее ствол. Около корня. Он представляет собой такой слегка деформированный цилиндр. Т.е. имеет очень простую форму.

Поднимем глаза выше. От ствола начинают выходить ветви. Каждая ветвь, в своем начале, имеет такую же структуру, как ствол – цилиндрическую, с точки зрения геометрии. Но структура всего дерева изменилась. Она стала намного более сложной.

А теперь посмотрим на эти ветви. От них отходят более мелкие ветки. У своего основания они имеют ту же слегка деформированную цилиндрическую форму. Как тот же ствол. А потом и от них отходят куда более мелкие ветки. И так далее.

Дерево воспроизводит само себя, на каждом уровне. При этом его структура постоянно усложняется, но остается себе подобной. Это ли не фрактал?

Кровообращение

А вот кровеносная система человека. Она тоже имеет фрактальную структуру. Есть артерии и вены. По одним из них кровь подходит к сердцу (вены), по другим поступает от него (артерии). А далее, кровеносная система начинает напоминать то самое дерево, о котором мы говорили выше. Сосуды, сохраняя свое строение, становятся все более тонкими и разветвленными. Они проникают в самые отдаленные участки нашего тела, доносят кислород и другие жизненно важные компоненты до каждой клетки. Это типичная фрактальная структура, которая воспроизводит саму себя все в более и более мелких масштабах.

Стоки реки

«Из далека долго течет река Волга». На географической карте это такая голубая извилистая линия. Ну, притоки крупные обозначены. Ока, Кама. А если мы уменьшим масштаб? Выяснится, что притоков этих намного больше. Не только у самой Волги, но и у Оки и Камы. А у них есть и свои притоки, только более мелкие. А у тех – свои. Возникает структура, удивительно похожая на кровеносную систему человека. И опять возникает вопрос. Какова протяженность всей этой водной системы? Если измерять протяженность только основного русла – все понятно. В любом учебнике можно прочитать. А если все измерять? Опять в пределе бесконечность получается.

Наша Вселенная

Конечно, в масштабах миллиардов световых лет, она, Вселенная, устроена однородно. Но давайте посмотрим на нее поближе. И тогда мы увидим, что никакой однородности в ней нет. Где-то расположены галактики (звездные скопления), где-то – пустота. Почему? Почему распределение материи подчиняется иррегулярным иерархическим законам. А что происходит внутри галактик (еще одно уменьшение масштаба). Где-то звезд больше, где-то меньше. Где-то существуют планетные системы, как в нашей Солнечной, а где-то – нет.

Не проявляется ли здесь фрактальная сущность мира? Сейчас, конечно, существует огромный разрыв между общей теорией относительности, которая объясняет возникновение нашей Вселенной и ее устройством, и фрактальной математикой. Но кто знает? Возможно, это все когда-то будет приведено к «общему знаменателю», и мы посмотрим на окружающий нас космос совсем другими глазами.

К практическим делам

Подобных примеров можно приводить много. Но давайте вернемся к более прозаическим вещам. Вот, например, экономика. Казалось бы, причем здесь фракталы. Оказывается, очень даже причем. Пример тому – фондовые рынки.

Практика показывает, что экономические процессы носят зачастую хаотичный, непредсказуемый характер. Существовавшие до сегодняшнего дня математические модели, которые пытались эти процессы описывать, не учитывали одного очень важного фактора – способность рынка к самоорганизации.

Вот тут на помощь и приходит теория фракталов, которые имеют свойства «самоорганизации», воспроизводя себя на уровне разных масштабов. Конечно, фрактал является чисто математическим объектом. И в природе, да и в экономике, их не существует. Но есть понятие фрактальных явлений. Они являются фракталами только в статистическом смысле. Тем не менее симбиоз фрактальной математики и статистики позволяет получить достаточно точные и адекватные прогнозы. Особенно эффективным этот подход оказывается при анализе фондовых рынков. И это не «придумки» математиков. Экспертные данные показывают, что многие участники фондовых рынков тратят немалые деньги на оплату специалистов в области фрактальной математики.

Что же дает теория фракталов? Она постулирует общую, глобальную зависимость ценообразования от того, что было в прошлом. Конечно, локально процесс ценообразования случаен. Но случайные скачки и падения цен, которые могут происходить сиюминутно, имеют особенность собираться в кластеры. Которые воспроизводятся на больших масштабах времени. Поэтому, анализируя то, что было когда-то, мы можем прогнозировать, как долго продлиться та или иная тенденция развития рынка (рост или падение).

Таким образом, в глобальном масштабе тот или иной рынок «воспроизводит» сам себя. Допуская случайные флуктуации, вызванные массой внешних факторов, в каждый конкретный момент времени. Но глобальные тенденции сохраняются.

Заключение

Почему мир устроен по фрактальному принципу? Ответ, возможно, состоит в том, что фракталы, как математическая модель, обладают свойством самоорганизации и самоподобия. При этом каждая их форма (см. приведенные в начале статьи картинки) сколь угодно сложна, но живет своей собственной жизнью, развивая себе подобные формы. Не так ли и наш мир устроен?

А вот общество. Появляется какая-нибудь идея. Сначала довольно абстрактная. А потом «проникает в массы». Да как-то трансформируется. Но в целом сохраняется. И превращается на уровне большинства людей в целеуказание жизненного пути. Вот тот же СССР. Принял очередной съезд КПСС очередные эпохальные решения, и пошло все это вниз. В более и более мелкие масштабы. Горкомы, парткомы. И так до каждого человека. Повторяющаяся структура.

Конечно, теория фракталов не позволяет нам прогнозировать будущие события. А это вряд ли и возможно. Но на многое то, что нас окружает, и что происходит в нашей повседневной жизни, позволяет смотреть совсем другими глазами. Осознанными.

Это абстрактные математические объекты, обладающие свойством самоподобия . Т.е., части фрактала подобны самому фракталу, а части этих частей подобны частям и т.д. Это хорошо видно на данной анимации . Увеличивая приближение, мы видим вновь похожие структуры.

Однако, возникает вопрос - насколько всеобщи фрактальные математические модели в применении к реальному Миру? В отдельных случаях они применимы. Например, при описании сильно изрезанных морских берегов - многократно увеличивая полученные из Космоса снимки таких берегов, мы будем получать меньшие структуры, подобные большим. Но, является ли Мир в целом фрактальным? Т.е., углубляясь в микромир и глядя на всё большие масштабы мегамира, будем ли мы видеть аналогичные структуры? Конечно, так было бы проще - не нужно открывать и придумывать ничего нового, всё построено одинаково: вокруг звёзд вращаются планеты, вокруг планет - спутники, вокруг ядер - электроны. Продолжая далее, можно предположить, что электроны, протоны и нейтроны также являются системами, в которых есть центральное тело и вращающиеся вокруг него более мелкие тела.

Однако, это было бы очень скучно - видеть везде одно и тоже. Никакой принципиальной новизны... Вряд ли Природа столь скучна и однообразна! Весь наш опыт говорит о том, что есть не только сходство, но и различие даже между самыми родственными объектами (например, между кристаллами из одной друзы, между снежинками, между людьми-близнецами и т.д.). Конечно, в Природе есть всеобщие законы , к открытию которых стремится познающий разум (это - главная и величайшая его цель; её прямо ставит перед собой философия , как вершина человеческой познавательной деятельности). Потому и нечто общее, схожее есть на всех уровнях организации материи: от элементарных частиц до психики, сознания, социума. Однако, формы проявления всеобщих законов на разных уровнях организации материи и в разных её частях различны. Поэтому, мы наблюдаем разные структуры в разных частях Мира и на разных его уровнях, хотя и подчиняющиеся одним законам (которые ещё далеко не в полной мере открыты нами).

Предлагаю обсудить эту интереснейшую тему, тем более, что она была уже поднята нашим уважаемым Solaris-ом в его цикле научно-фантастических рассказов «Вселенная Инга Аулэнга» . В них автор высказывает идею, что Вселенная подобна клетке многоклеточного организма, а другие вселенные являются другими клетками этого организма. Другая идея Solaris-а состоит в том, что отдельный протон подобен всей Вселенной. Всё это не что иное, как идеи о фрактальности Мира .

Видеоролик , о котором я упоминал выше (с хорошо подобранной музыкой!) вызывает интересное ощущение проникновение вглубь «материи», своего собственного уменьшения при этом. Как сказал ещё в 1959 году выдающийся физик Ричард Фейнман, предвидя развитие нанотехнологий, «там внизу - много места ». И это телесно ощущаешь, когда смотришь этот ролик.
Но, главное - он заставляет задуматься над фундаментальными вопросами о связи макро-, микро- и мегамиров . Что произойдёт, если мы вдруг резко уменьшимся? Привычный нам макромир с его проблемами и несуразностями уходит куда-то в стороны, в область мегамира. И вместе с этим для нас теряют значение его процессы, его размеры, времена и энергии. Их как бы уже нет для нас. В том новом микромире, куда мы «переселяемся», возникают свои масштабы пространства, времени и энергии. Наша жизнь в нём будет лишь мгновением для существ, оставшихся в нашем прежнем макромире, наш размер будет для них за пределами видимости даже в самые мощные микроскопы, а наши энергии будут... (какие? больше? меньше?). Поэтому, и мы для того мира, и он для нас будем едва ощутимыми загадками, оказывающими друг на друга исчезающе малое влияние.
А, может быть, всё наоборот? И микро-, макро- и мегамиры как-то тесно связаны друг с другом и существенно влияют друг на друга, несмотря на кардинальное различие масштабов? Хотя бы через те самые всеобщие законы, о которых я говорил выше.
Обо всём этом заставляет задуматься этот интересный видеоролик.

МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ -УЧРЕЖДЕНИЕ СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА

с. Мечетное

Научно-практическая конференция «Удивительный мир математики»

Исследовательская работа «Путешествие в мир фракталов»

Выполнила: учащаяся 10 класса

Аллахвердиева Наиля

Руководитель: Давыдова Е. В.


  1. Вступление.

  2. Основная часть:
а) Понятие фрактал;

б) История создания фракталов;

в) Классификация фракталов;

г) Применение фракталов;

д) Фракталы в природе;

е) Цвета фракталов.

3. Заключение.

Вступление.

Что скрывается за таинственным понятием «фрактал»? Наверное, для многих этот термин ассоциируется с красивыми изображениями, замысловатыми узорами и яркими образами, созданными с помощью компьютерной графики. Но фракталы – это непросто красивые картинки. Это особые структуры, которые лежат в основе всего, что нас окружает. Ворвавшись в научный мир всего несколько десятилетий назад, фракталы успели произвести настоящую революцию в восприятии окружающей действительности. Используя фракталы, человек может создавать высокоточные математические модели природных объектов, систем, процессов и явлений.

Основная часть
Понятие фрактала.

Фрактал (от лат. fractus - дробленый, сломанный, разбитый) - сложная геометрическая фигура, обладающая свойством самоподобия, то есть составленная из нескольких частей, каждая из которых подобна всей фигуре целиком. Многие объекты в природе обладают фрактальными свойствами, например, побережья, облака, кроны деревьев, кровеносная система и система альвеол человека или животных.

Фракталы, особенно на плоскости, популярны благодаря сочетанию красоты с простотой построения при помощи компьютера.

История создания .
Вывести науку о фракталах на новый уровень сумел французский математик Бенуа Мандельброт – ученый, который сегодня признан отцом фрактальной геометрии. Мандельброт впервые дал определение термину «фрактал»:

Цитата


"Фракталом называется структура, состоящая из частей, которые в каком-то смысле подобны целому"
В 70-е годы Бенуа Мандельброт работал математическим аналитиком в компании IBM. Ученый впервые задумался о фракталах в процессе изучения шумов в электронных сетях. На первый взгляд, помехи при передаче данных происходили абсолютно хаотично. Мандельброт построил график появления ошибок и с удивлением обнаружил, что в любом временном масштабе все фрагменты выглядели аналогично. В масштабе недели шумы появлялись в такой же последовательности, как и в масштабе одного дня, часа или минуты. Мандельброт понял, что частота возникновения ошибок при передаче данных распределяется во времени по принципу, изложенному Кантором в конце XIX века. Тогда Бенуа Мандельброт всерьез увлекся изучением фракталов.
В отличие от своих предшественников, для создания фракталов Мандельброт использовал не геометрические построения, а алгебраические преобразования различной сложности. Математик применял метод обратных итераций, который подразумевает многократное вычисление одной и той же функции. Используявозможности ЭВМ, математик выполнял огромное количество последовательных вычислений, результаты которых отобразил графически на комплексной плоскости. Так появилось множество Мандельброта – сложный алгебраический фрактал, который сегодня считается классикой науки о фракталах. В некоторых случаях один и тот же предмет может считаться одновременно гладким и фрактальным. Чтобы объяснить, почему это происходит, Мандельброт приводит интересный наглядный пример. Клубок шерстяных ниток, удаленный на некоторое расстояние, выглядит как точка с размерностью 1. Клубок, расположенный неподалеку, выглядит как двумерный диск. Взяв его в руки, можно отчетливо ощутить объем клубка – теперь он воспринимается как трехмерный. А фракталом клубок может считаться только с точки зрения наблюдателя, использующего увеличительный прибор, или мухи, севшей на поверхность неровной шерстяной нити. Поэтому истинная фрактальность объекта зависит от точки зрения наблюдателя и от разрешающей способности используемого прибора.
Мандельброт отметил интересную закономерность – чем ближе рассматривать измеряемый объект, тем более протяженной будет его граница. Это свойство можно наглядно продемонстрировать на примере измерения протяженности одного из природных фракталов - береговой линии. Проводя измерения на географической карте, можно получить приблизительное значение длины, поскольку все неровности и изгибы не будут учтены. Если проводить измерение с учетом всех неровностей рельефа, видимых с высоты человеческого роста, то результат будет несколько другим – длина береговой линии значительно увеличится. А если теоретически представить, что измерительный прибор будет огибать неровности каждого камешка, то в этом случае протяженность береговой линии будет практически бесконечной.
Классификация фракталов.

Фракталы разделяют на:

геометрические: фракталы этого класса - самые наглядные, в них сразу видна самоподобность. История фракталов началась именно с геометрических фракталов, которые исследовались математиками в XIX веке.

алгебраические:эта группа фракталов получила такое название потому, что фракталы образуются при помощи простых алгебраических формул.

стохастические:образуются в случае случайной перемены в итерационном процессе параметров фрактала. Двумерные стохастические фракталы используются при моделировании рельефа местности и поверхности моря.

Геометрические фракталы

Именно с них и начиналась история фракталов. Этот тип фракталов получается путем простых геометрических построений. Обычно при построении этих фракталов поступают так: берется "затравка" - аксиома - набор отрезков, на основании которых будет строиться фрактал. Далее к этой "затравке" применяют набор правил, который преобразует ее в какую-либо геометрическую фигуру. Далее к каждой части этой фигуры применяют опять тот же набор правил. С каждым шагом фигура будет становиться все сложнее и сложнее, и если мы проведем (по крайней мере, в уме) бесконечное количество преобразований - получим геометрический фрактал. Классические примеры геометрических фракталов: Снежинка Коха, Лист, Треугольник Серпинского, Драконова ломанная (приложение 1).


Алгебраические фракталы

Вторая большая группа фракталов – алгебраические (приложение 2). Свое название они получили за то, что их строят, на основе алгебраических формул иногда весьма простых. Методов получения алгебраических фракталов несколько.

К сожалению, многие термины уровня 10-11 класса, связанные с комплексными числами, необходимые для объяснения построения фрактала, мне неизвестны и пока трудны для понимания, поэтому подробно описать построение фракталов подобного вида для меня не представляется возможным.

Изначально фрактальная природа черно-белая, но если добавить немного фантазии и красок, то можно получить настоящее произведение искусств.


Стохастические фракталы

Типичный представитель данного класса фракталов «Плазма» (приложение 3). Для ее построения возьмем прямоугольник и для каждого его угла определим цвет. Далее находим центральную точку прямоугольника и раскрашиваем ее в цвет равный среднему арифметическому цветов по углам прямоугольника плюс некоторое случайное число. Чем больше случайное число – тем более «рваным» будет рисунок. Если мы теперь скажем, что цвет точки это высота над уровнем моря – получим вместо плазмы – горный массив. Именно на этом принципе моделируются горы в большинстве программ. С помощью алгоритма, похожего на плазму строится карта высот, к ней применяются различные фильтры, накладываем текстуру и, пожалуйста, фотореалистичные горы готовы!

Применение фракталов

Уже сегодня фракталы находят широкое применение в самых разнообразных областях. Активно развивается направление фрактального архивирования графической информации. Теоретически, фрактальное архивирование может сжимать изображения до размеров точки без потери качества. При увеличении картинок, сжатых по фрактальному принципу, отчетливо отображаются мельчайшие детали, а эффект зернистости при этом полностью отсутствует.


Принципы теории фракталов используются в медицине для анализа электрокардиограмм, поскольку ритм сердечных сокращений также является фракталом. Активно развивается направление исследований кровеносной системы и других внутренних систем человеческого организма. В биологии фракталы применяются для моделирования процессов, происходящих внутри популяций.
Метеорологи используют фрактальные зависимости для анализа интенсивности движения воздушных масс, благодаря чему появляется возможность более точного прогнозирования изменений погоды. Физика фрактальных сред с большим успехом решает задачи изучения динамики сложных турбулентных потоков, процессов адсорбции и диффузии. В нефтехимической отрасли фракталы используются для моделирования пористых материалов. Теория о фракталах эффективно применяется в работе на финансовых рынках. Фрактальная геометрия используется для создания мощных антенных устройств.
Сегодня теория фракталов является самостоятельной областью науки, на основе которой создаются все новые и новые направления в различных областях. Значимости фракталов посвящено множество научных трудов.

Но эти необычные объекты не только чрезвычайно полезны, но и невероятно красивы. Именно поэтому фракталы постепенно находят свое место в искусстве. Их удивительная эстетическая привлекательность вдохновляет многих художников на создание фрактальных картин. Современные композиторы создают музыкальные произведения, используя электронные инструменты с различными фрактальными характеристиками. Писатели применяют фрактальную структуру для формирования своих литературных произведений, а дизайнеры создают фрактальные предметы мебели и интерьера.


Фрактальность в природе

В 1977 году была издана книга Мандельброта «Фракталы: форма, случайность и размерность», а в 1982 году вышла еще одна монография – «Фрактальная геометрия природы», на страницах которой автор продемонстрировал наглядные примеры различных фрактальных множеств и привел доказательства существования фракталов в природе. Главную идею теории фракталов Мандельброт выразил следующими словами:

"Почему геометрию часто называют холодной и сухой? Одна из причин заключается в том, что она неспособна достаточно точно описать форму облака, горы, дерева или берега моря. Облака – это не сферы, линии берега – это не окружности, и кора не является гладкой, а молния не распространяется по прямой. Природа демонстрирует нам не просто более высокую степень, а совсем другой уровень сложности. Число различных масштабов длин в структурах всегда бесконечно. Существование этих структур бросает нам вызов в виде трудной задачи изучения тех форм, которые Евклид отбросил как бесформенные – задачи исследования морфологии аморфного. Математики, однако, пренебрегли этим вызовом и предпочли все больше и больше отдаляться от природы, изобретая теории, которые не соответствуют ничему из того, что можно увидеть или почувствовать".


Свойствами фрактального множества обладают многие природные объекты (приложение 4) .

Действительно ли фракталы являются универсальными структурами, которые были взяты за основу при создании абсолютно всего, что есть в этом мире? Форма многих природных объектов максимально приближена к фракталам. Но не все существующие в мире фракталы имеют настолько правильную и бесконечно повторяющуюся структуру, как множества, созданные математиками. Горные хребты, поверхности разлома металла, турбулентные потоки, облака, пена и многие-многие другие природные фракталы лишены идеально точного самоподобия. И было бы абсолютно ошибочно полагать, что фракталы являются универсальным ключом ко всем тайнам Вселенной. При всей своей кажущейся сложности, фракталы – это лишь упрощенная модель реальности. Но среди всех доступных на сегодняшний день теорий фракталы являются самым точным средством описания окружающего мира.

Действительно ли фракталы являются универсальными структурами, которые были взяты за основу при создании абсолютно всего, что есть в этом мире? Форма многих природных объектов максимально приближена к фракталам. Но не все существующие в мире фракталы имеют настолько правильную и бесконечно повторяющуюся структуру, как множества, созданные математиками. Горные хребты, поверхности разлома металла, турбулентные потоки, облака, пена и многие-многие другие природные фракталы лишены идеально точного самоподобия. И было бы абсолютно ошибочно полагать, что фракталы являются универсальным ключом ко всем тайнам Вселенной. При всей своей кажущейся сложности, фракталы – это лишь упрощенная модель реальности. Но среди всех доступных на сегодняшний день теорий фракталы являются самым точным средством описания окружающего мира.
Цвета фракталов

Красоту фракталам добавляет их яркая и броская расцветка. Сложные цветовые схемы делают фракталы красивыми и запоминающимися. С математической точки зрения фракталы – это черно-белые объекты, каждая точка которых либо принадлежит множеству, либо не принадлежит. Но возможности современных компьютеров позволяют делать фракталы цветными и яркими. И это не простое раскрашивание соседних областей множества в произвольном порядке.

Анализируя значение каждой точки, программа автоматически определяет оттенок того или иного фрагмента. Черным цветом изображаются точки, в которых функция принимает постоянное значение. Если же значение функции стремится к бесконечности, то тогда точка окрашивается в другой цвет. Интенсивность окрашивания зависит от скорости приближения к бесконечности. Чем больше повторений требуется для приближения точки к стабильному значению, тем светлее становится ее оттенок. И наоборот – точки, быстро устремляющиеся к бесконечности, окрашены в яркие и насыщенные цвета.
Заключение

Первый раз услышав о фракталах, задаёшься вопросом, что это такое?

С одной стороны – это сложная геометрическая фигура, обладающая свойством самоподобия, то есть составленная из нескольких частей, каждая из которых подобна всей фигуре целиком.

Это понятие завораживает своей красотой и таинственностью, проявляясь в самых неожиданных областях: метеорологии, философии, географии, биологии, механике и даже истории.

Практически невозможно не увидеть фрактал в природе, ведь почти каждый объект (облака, горы, береговая линия и т.д.) имеют фрактальное строение. У большинства веб-дизайнеров, программистов есть собственная галерея фракталов(необычайно красивы).

По сути, фракталы открывают нам глаза и позволяют посмотреть на математику с другой стороны. Казалось бы, производятся обычные расчёты с обычными «сухими» цифрами, но это даёт нам по-своему уникальные результаты, позволяющие почувствовать себя творцом природы. Фракталы дают понять, что математика - это тоже наука о прекрасном.

Своей проектной работой я хотела рассказать о довольно новом понятии в математике «фрактал». Что это такое, какие существуют виды, где распространяются. Я очень надеюсь, что фракталы заинтересовали вас. Ведь, как оказалось, фракталы довольно интересны и они есть почти на каждом шагу.

Список литературы


  • http://ru.wikipedia.org/wiki

  • http://www.metaphor.ru/er/misc/fractal_gallery.xml

  • http://fractals.narod.ru/

  • http://rusproject.narod.ru/article/fractals.htm

  • Бондаренко В.А.,Дольников В.Л. Фрактальное сжатие изображений по Барнсли-Слоану. // Автоматика и телемеханика.-1994.-N5.-с.12-20.

  • Ватолин Д. Применение фракталов в машинной графике. // Computerworld-Россия.-1995.-N15.-с.11.

  • Федер Е. Фракталы. Пер. с англ.-М.: Мир,1991.-254с. (Jens Feder, Plenum Press, NewYork, 1988)

  • Application of fractals and chaos. 1993, Springer-Verlag, Berlin.

Приложение 1

Приложение 2

Приложение 3

Приложение 4

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Российской Федерации

Тема : Фракталы - особые объекты живого и неживого мира

Хабаровск ТОГУ 2015

  • Оглавление
  • фрактал геометрический фрактальный графика
  • История фракталов
  • Классификация фракталов
  • Геометрические фракталы
  • Алгебраические фракталы
  • Применение фракталов
  • Фракталы и мир вокруг нас
  • Фрактальная графика
  • Применение фракталов
  • Естественные науки
  • Радиотехника
  • Информатика
  • Экономика и финансы

История фракталов

Очень часто мы встречаемся с особыми объектами, но мало кто знает, что это и есть фракталы. Фракталы - уникальные объекты, порожденные непредсказуемыми движениями хаотического мира. Они встречаются как в малых объектах, например, клеточная мембрана, и огромных, таких как Солнечная система и Галактика. В повседневной жизни мы можем увидеть фракталы на рисунке обоев, на ткани, заставке рабочего стола на компьютере, а в природе - это растения, морские животные, природные явления.

Учёные, с древних времен, зачарованы фракталами, программисты и специалисты в области компьютерной графики также любят эти объекты. Открытие фракталов стало революцией в человеческом восприятии мира и открытием новой эстетики искусства и науки.

Так что же такое фракталы? Фрактал - геометрическая фигура, обладающая свойством самоподобия, то есть составленная из нескольких частей, каждая из которых подобна всей фигуре в целом.

Термин фрактал был предложен в 1975г. Бенуа Мандельбротом для обозначения нерегулярных, самоподобных структур, которыми он занимался. Рождением фрактальной геометрии является выход его книги “The Fractal Geometry of Nature” в 1977г. Его работы базировались на трудах ученых Пуанкаре, Фату, Жюлиа, Кантора и Хаусдорфа, работавших в 1875 ? 1925 годах в этой же области. Но удалось объединить их работы в единую систему только в наше время.

Понятие «фрактал» образовано от латинского «fractus» ? состоящий из фрагментов. Одно из определений звучит так: «Фракталом называется структура, состоящая из частей, которые, в каком?то смысле подобны целому».

Бенуа Мандельброт в своих работах привел яркие примеры применения фракталов для объяснения некоторых природных явлений. Он уделил большое внимание интересному свойству, которым обладают многие фракталы. Дело в том, что часто фрактал можно разбить на сколь угодно малые части так, что каждая часть окажется просто уменьшенной копией целого. Иначе говоря, если мы будем смотреть на фрактал в микроскоп, то с удивлением увидим ту же самую картину, что и без микроскопа. Это свойство самоподобия резко отличает фракталы от объектов классической геометрии.

Для современных учёных изучение фракталов? не просто новая область познания. Это открытие нового типа геометрии, которая описывает мир вокруг нас и которую можно увидеть не только в учебниках, но и в природе, и в безграничной Вселенной. В настоящее время Мандельброт и другие учёные расширили область фрактальной геометрии так, что она может быть применима практически ко всему в мире, от предсказания цен на рынке ценных бумаг до совершения новых открытий в теоретической физике.

Классификация фракталов

Существуют различные классификации фракталов.

Основной классификацией фракталов является разделение на геометрические и алгебраические.

Геометрические фракталы обладают точным самоподобием, а алгебраические - приближённым самоподобием.

Существует также разделение на природные и рукотворные фракталы.

К рукотворным относятся фракталы, которые были придуманы учёными, они при любом масштабе обладают фрактальными свойствами. На природные фракталы накладывается ограничение на область существования -- то есть максимальный и минимальный размер, при которых у объекта наблюдаются фрактальные свойства.

Самыми простыми фракталами являются геометрические фракталы.

Геометрические фракталы

Геометрические фракталы по-другому называют классическими, детерминированными или линейными. Они являются самыми наглядными, так как обладают так называемой жесткой самоподобностью, не изменяющейся при изменении масштаба. Это значит, что, независимо от того, насколько вы приближаете фрактал, вы видите всё тот же узор.

В двухмерном случае такие фракталы можно получить, задав некоторую ломаную, называемую генератором. За один шаг алгоритма каждый из отрезков данной ломаной (инициатора) заменяется на ломаную-генератор в соответствующем масштабе. В результате бесконечного повторения этой процедуры получается фрактальная кривая. Несмотря на кажущуюся сложность этой кривой, её форма определяется лишь формой генератора.

Наиболее известные геометрические фракталы: кривая Коха, кривая Минковского, кривая Леви, кривая дракона, салфетка и ковер Серпинского, пятиугольник Дюрера.

Построение некоторых геометрических фракталов

1). Кривая Коха.

Она была изобретена в 1904 году немецким математиком по имени Хельге фон Кох. Для её построения берется единичный отрезок, делится на три равные части и среднее звено заменяется равносторонним треугольником без этого звена. На следующем шаге повторяем операцию для каждого из четырёх получившихся отрезков. В результате бесконечного повторения данной процедуры получается фрактальная кривая.

2). Салфетка Серпинского.

В 1915 году польский математик Вацлав Серпинский придумал занимательный объект. Для его построения берётся сплошной равносторонний треугольник. На первом шаге из центра удаляется перевернутый равносторонний треугольник. На втором шаге удаляется три перевернутых треугольника из трёх оставшихся треугольников и т.д. По теории конца этому процессу не будет, и в треугольнике не останется живого места, но и на части он не распадется - получится объект, состоящий из одних только дырок.

3). Дракон Хартера-Хэйтуэя.

Дракон Хартера, также известный как дракон Хартера-Хейтуэя, впервые исследовали физикии NASA ? Джон Хейтуэй, Вильям Хартер и Брюс Бенкс. Он был описан в 1967 году Мартином Гарднером в колонке «Математические игры» журнала «Scientific American».

Каждый из отрезков прямой на следующем шаге заменяется на два отрезка, образующих боковые стороны равнобедренного прямоугольного треугольника, для которого исходный отрезок являлся бы гипотенузой. В результате отрезок как бы прогибается под прямым углом. Направление прогиба чередуется. Первый отрезок прогибается вправо (по ходу движения слева направо), второй - влево, третий - опять вправо и т.д.

Примеры геометрических фракталов

Кривая Коха Салфетка Серпинского

Дракон Хартера-Хэйтуэя

Вторая большая группа фракталов - алгебраические. Свое название они получили за то, что их строят на основе алгебраических формул.

Алгебраические фракталы

Сложные (алгебраические) фракталы невозможно создать без помощи компьютера. Для получения красочных результатов этот компьютер должен обладать мощным математическим сопроцессором и монитором с высоким разрешением. Свое название они получили за то, что их строят на основе алгебраических формул. В результате математической обработки данной формулы на экран выводится точка определенного цвета. Результатом оказывается странная фигура, в которой прямые линии переходят в кривые, появляются хотя и не без деформаций, эффекты самоподобия на различных масштабных уровнях. Практически каждая точка на экране компьютера как отдельный фрактал.

Наиболее известные алгебраические фракталы: множества Мандельброта и Жюлиа, бассейны Ньютона.

Алгебраические фракталы обладают приближенным самоподобием. Фактически, если вы увеличите маленькую область любого сложного фрактала, а затем проделаете то же самое с маленьким участком этой области, то эти два увеличения будут значительно отличаться друг от друга. Два изображения будут очень похожи в деталях, но они не будут полностью идентичными.

АЛГЕБРАИЧЕСКИЕ ФРАКТАЛЫ

Приближения множества Мандельброта

Фракталы находят всё большее и большее применение в науке. Основная причина в том, что они описывают реальный мир лучше, чем традиционная физика и математика.

Применение фракталов

1). Теория хаоса: фракталы всегда ассоциируются со словом хаос. Теория хаоса определяется как учение о сложных нелинейных динамических системах. Хаос - это отсутствие предсказуемости. Он возникает в динамических системах, когда для двух очень близких начальных значений система ведет себя совершенно по-разному. Пример хаотичной динамической системы - погода. Примерами подобных систем являются турбулентные потоки, биологические популяции, общество и его подсистемы: экономические, политические и другие социальные системы. Одной из центральных концепций в этой теории является невозможность точного предсказания состояния системы. Теория хаоса сосредотачивает внимание не на беспорядке системы (наследственной непредсказуемости системы), а на унаследованном ей порядке (общем в поведении похожих систем). Таким образом, наука о хаосе - это система представлений о различных формах порядка, где случайность становится организующим принципом.

2). Экономика: анализ рынка ценных бумаг.

3). Астрофизика: описание процессов кластеризации галактик во Вселенной.

4). Геология: изучение шероховатости минералов;

5). Картография: изучение форм береговых линий; изучение разветвленной сети речных русел.

6). Механика жидкостей и газов, физика поверхностей:

- динамика и турбулентность сложных потоков.

- моделирование языков пламени;

7). Биология и медицина:

- моделирование популяций животных и миграции птиц;

- моделирование эпидемий;

- анализ строения кровеносной системы;

- рассмотрение сложных поверхностей клеточных мембран;

- описание процессов внутри организма, например, биения сердца.

8). Фрактальные антенны: использование фрактальной геометрии при проектировании антенных устройств было впервые применено американским инженером Натаном Коэном, который тогда жил в центре Бостона, где была запрещена установка на зданиях внешних антенн. Он вырезал из алюминиевой фольги фигуру в форме кривой Коха и наклеил её на лист бумаги, а затем присоединил к приёмнику. Оказалось, что такая антенна работает не хуже обычной. И хотя физические принципы работы такой антенны не изучены до сих пор, это не помешало Коэну основать собственную компанию и наладить их серийный выпуск.

9). Сжатие изображений: достоинства алгоритмов фрактального сжатия изображений - очень маленький размер упакованного файла и малое время восстановления картинки. Другое преимущество фрактального сжатия в том, что при увеличении картинки, не наблюдается эффекта пикселизации (увеличения размеров точек до размеров, искажающих изображение). При фрактальном сжатии, после увеличения, картинка часто выглядит даже лучше, чем до него.

10). Компьютерная графика: компьютерная графика переживает сегодня период интенсивного развития. Она оказалась способна воссоздать на экране монитора бесконечное разнообразие фрактальных форм и пейзажей, погружая зрителя в удивительное виртуальное пространство. В настоящие время при помощи сравнительно простых алгоритмов появилась возможность создавать трёхмерные изображения фантастических ландшафтов и форм, которые способны преобразовываться во времени в ещё более захватывающие картины. Склонность фракталов походить на горы, цветы и деревья эксплуатируется некоторыми графическими редакторами (например, фрактальные облака из 3D studio MAX, фрактальные горы в World Builder). Фрактальные модели сегодня широко применяют в компьютерных играх, создавая в них обстановку, которую уже трудно отличить от реальности.

Конец ХХ века ознаменовался не только открытием поразительно красивых и бесконечно разнообразных структур, названных фракталами, но и осознанием фрактального характера природы. Окружающий нас мир очень разнообразен, и его объекты не укладываются в жёсткие рамки евклидовых линий и поверхностей.

Фракталы и мир вокруг нас

« Красота всегда относительна...Не следует полагать, что берега океана и впрямь бесформенны только потому, что их форма отлична от правильной формы построенных нами причалов; форму гор нельзя считать неправильной на основании того, что они не являются правильными конусами или пирамидами; из того, что расстояния между звёздами неодинаковы, ещё не следует, что их разбросала по небу неумелая рука. Эти неправильности существуют только в нашем воображении, на самом деле они таковыми не являются и никак не мешают истинным проявлениям жизни на Земле, ни в царстве растений и животных, ни среди людей». Эти слова английского учёного XVII в. Ричарда Бентли свидетельствуют о том, что идея объединить формы берегов, гор и небесных объектов и противопоставить их евклидовым построениям возникла в умах людей уже очень давно.

Галилео Галилей сказал, что «великая книга Природы написана на языке геометрии». Сейчас с уверенностью можно утверждать, что она написана на языке фрактальной геометрии.

То, что мы наблюдаем в природе, часто интригует нас бесконечным повторением одного и того же узора, увеличенного или уменьшенного во сколько угодно раз. Причудливые формы береговых линий и замысловатые изгибы рек, изломанные поверхности горных хребтов и очертания облаков, раскидистые ветви деревьев и коралловые рифы, робкое мерцание свечи и вспененные потоки горных рек - все это фракталы. Одни из них, типа облаков или бурных потоков, постоянно меняют свои очертания, другие, подобно деревьям или горным массивам, сохраняют свою структуру неизменной. Общим для всех типов фрактальных структур является их самоподобие - основное свойство, обеспечивающее выполнение во фракталах основного закона - закона единства в многообразии мироздания.

Фрактальными структурами также являются системы и органы человека. Так, например, кровеносные сосуды многократно разветвляются, т.е. имеют фрактальную природу. Электрическая активность сердца - фрактальный процесс. Кардиологи обнаружили, что спектральные характеристики сердечных сокращений подчиняются фрактальным законам, как землетрясения и экономические феномены. В тканях пищеварительного тракта одна волнистая поверхность встроена в другую. Легкие также представляют пример того, как большая площадь «втиснута» в маленькое пространство. В действительности, вся структура человеческого тела имеет фрактальную природу; это уже признано учеными. Принцип единого простого, задающего разнообразное сложное, заложен в геноме человека, когда одна клетка живого организма содержит информацию обо всем организме в целом.

Фрактальные структуры в природе

Приведем несколько образцов фото:

Как сказал биолог Джон Холдейн, “мир устроен не только причудливей, чем мы думаем, но и причудливей, чем мы можем предполагать”. Фракталы - не изобретения Мандельброта. Они существуют объективно. В природных формах и процессах, в науке и искусстве, которые этот мир отображают и познают. Именно “за изменение нашего взгляда на мир благодаря идеям фрактальной геометрии” Бенуа Мандельброту в 1993 году была присуждена почётная премия Вольфа в области физики.

В настоящее время большой популярностью пользуются фрактальные картины. Они производят совершенно фантастическое впечатление. Множество тонких линий, образующих одно целое, или же необычные элементы, сплетающиеся в единую картину. Вспышки яркого света и умеренные сглаженные линии. Фрактал кажется живым. Он горит, пылает, он завлекает, и Вы не можете отвести от него глаз, изучая даже самые крохотные и незначительные детали.

Фрактальная графика

Фрактальные картины в интерьере

Применение фракталов

Естественные науки

В физике фракталы естественным образом возникают при моделировании нелинейных процессов, таких как турбулентное течение жидкости, сложные процессы диффузии-адсорбции, пламя, облака и тому подобное. Фракталы используются при моделировании пористых материалов, например, в нефтехимии. В биологии они применяются для моделирования популяций и для описания систем внутренних органов (система кровеносных сосудов). После создания кривой Коха было предложено использовать её при вычислении протяжённости береговой линии.

Радиотехника

Использование фрактальной геометрии при проектировании антенных устройств было впервые применено американским инженером Натаном Коэном, который тогда жил в центре Бостона, где была запрещена установка внешних антенн на здания. Натан вырезал из алюминиевой фольги фигуру в форме кривой Коха и наклеил её на лист бумаги, затем присоединил к приёмнику. Коэн основал собственную компанию и наладил их серийный выпуск.

Информатика

Сжатие изображений

Фрактальное дерево

Существуют алгоритмы сжатия изображения с помощью фракталов. Они основаны на идее о том, что вместо самого изображения можно хранить сжимающее отображение, для которого это изображение (или некоторое близкое к нему) является неподвижной точкой. Один из вариантов данного алгоритма был использован фирмой Microsoft при издании своей энциклопедии, но большого распространения эти алгоритмы не получили.

Компьютерная графика

Фракталы широко применяются в компьютерной графике для построения изображений природных объектов, таких как деревья, кусты, горные ландшафты, поверхности морей и так далее. Существует множество программ, служащих для генерации фрактальных изображений.

Децентрализованные сети

Система назначения IP-адресов в сети Netsukuku (эта сеть является проектом создания распределённой самоорганизующейся одноранговой сети, способной обеспечить взаимодействие огромного количества узлов при минимальной нагрузке на центральный процессор и память) использует принцип фрактального сжатия информации для компактного сохранения информации об узлах сети. Каждый узел сети Netsukuku хранит всего 4 Кб информации о состоянии соседних узлов, при этом любой новый узел подключается к общей сети без необходимости в центральном регулировании раздачи IP-адресов, что, например, характерно для сети Интернет. Таким образом, принцип фрактального сжатия информации гарантирует полностью децентрализованную, а следовательно, максимально устойчивую работу всей сети.

Экономика и финансы

А. А. Алмазов в своей книге «Фрактальная теория. Как поменять взгляд на рынки» предложил способ использования фракталов при анализе биржевых котировок, в частности -- на рынке Форекс.

Всякий раз, рассматривая фракталы, задумываешься, как прекрасен реальный мир и мир математики, и о том, что математика действительно является языком, который способен описать практически всё, что существует во Вселенной.

Библиографический список

1. Мандельброт Б. Фрактальная геометрия природы. М.: “Институт компьютерных исследований”, 2002. 656 с.

2. Морозов А.Д. Введение в теорию фракталов. Н.Новгород: Изд-во Нижегород. ун-та 1999 г. 140 с.

3. Пайтген Х.-О., Рихтер П. Х. Красота фракталов. М.: “Мир”, 1993. - 176 с.

4. Тихоплав В.Ю., Тихоплав Т.С. Гармония хаоса, или фрактальная реальность. С.-Петербург: ИД “Весь”, 2003. 340 с.

5. Федер Е. Фракталы. М: “Мир”, 1991. 254 с.

6. Шредер М. Фракталы, хаос, степенные законы. Миниатюры из бесконечного рая. Ижевск: “РХД”, 2001. 528 с.

Список сайтов о фракталах

1. http://www.fractals.nsu.ru.

2. http://www.fractalworld.xaoc.ru.

3. http://www.multifractal.narod.ru.

4. http://algolist.manual.ru.

Размещено на Allbest.ru

Подобные документы

    Рассмотрение фрактальной размерности как одной из характеристик инженерной поверхности. Описание природных фракталов. Измерение длины негладкой (изломанной) линии. Подобие и скейлинг, самоподобие и самоаффинность. Соотношение "периметр-площадь".

    контрольная работа , добавлен 23.12.2015

    История появления теории фракталов. Фрактал – самоподобная структура, чье изображение не зависит от масштаба. Это рекурсивная модель, каждая часть которой повторяет в своем развитии развитие всей модели в целом. Практическое применение теории фракталов.

    научная работа , добавлен 12.05.2010

    Классические фракталы. Самоподобие. Снежинка Коха. Ковер Серпинского. L-системы. Хаотическая динамика. Аттрактор Лоренца. Множества Мандельброта и Жюлиа. Применение фракталов в компьютерных технологиях.

    курсовая работа , добавлен 26.05.2006

    Признаки некоторых четырехугольников. Реализация моделей геометрических ситуаций в средах динамической геометрии. Особенности динамической среды "Живая геометрия", особенности построения в ней моделей параллелограмма, ромба, прямоугольника и квадрата.

    курсовая работа , добавлен 28.05.2013

    Геометрическая картина мира и предпосылки возникновения теории фракталов. Элементы детерминированной L-системы: алфавит, слово инициализации и набор порождающих правил. Фрактальные свойства социальных процессов: синергетика и хаотическая динамика.

    курсовая работа , добавлен 22.03.2014

    Изучение проявлений геометрических законов в живой природе и использования их в образовательной практической деятельности. Описание геометрических законов и сущность геометрических построений. Графическое образование и его место в современном мире.

    дипломная работа , добавлен 24.06.2010

    Определение понятия модели, необходимость их применения в науке и повседневной жизни. Характеристика методов материального и идеального моделирования. Классификация математических моделей (детерминированные, стохастические), этапы процесса их построения.

    реферат , добавлен 20.08.2015

    Исследование понятия симметрии, соразмерности, пропорциональности и одинаковости в расположении частей. Характеристика симметрических свойств геометрических фигур. Описания роли симметрии в архитектуре, природе и технике, в решении логических задач.

    презентация , добавлен 06.12.2011

    История математизации науки. Основные методы математизации. Пределы и проблемы математизации. Проблемы применения математических методов в различных науках связаны с самой математикой (математическое изучение моделей), с областью моделирования.

    реферат , добавлен 24.05.2005

    Понятие и история исследования золотого сечения. Особенности его отражения в математике, природе, архитектуре и живописи. Порядок и принципы построения, структура и сферы практического применения золотого сечения, математическое обоснование и значение.

Министерство образования, науки и молодежи Республики Крым

Муниципальное бюджетное общеобразовательное учреждение «Магазинский учебно-воспитательный комплекс» муниципального образования Красноперекопский район Республики Крым

Направление: математика

ИССЛЕДОВАНИЕ ОСОБЕННОСТЕЙ ФРАКТАЛЬНЫХ МОДЕЛЕЙ

ДЛЯ ПРАКТИЧЕСКОГО ПРИМЕНЕНИЯ

Работу выполнил:

ученик 8 класса муниципального бюджетного общеобразовательного учреждения «Магазинский учебно-воспитательный комплекс» муниципального образования Красноперекопский район Республики Крым

Научный руководитель:

учитель математики муниципального бюджетного общеобразовательного учреждения «Магазинский учебно-воспитательный комплекс» муниципального образования Красноперекопский район Республики Крым

Красноперекопский район – 2016

Наукой совершено множество гениальных открытий и изобретений, основательно изменивших жизнь человечества: электричество, атомная энергия , вакцина и многое другое. Однако есть такие открытия, которым мало придают значения, но они также способны повлиять и влияют на нашу жизнь. Одним из таких открытий являются фракталы, которые помогают установить связь между событиями даже в хаосе.

Американский математик Бенуа Мандельброт в своей книге «Фрактальная геометрия природы» писал: «Почему геометрию часто называют холодной и сухой? Одна из причин заключается в том, что она неспособна достаточно точно описать форму облака, горы, дерева или берега моря. Облака – это не сферы, линии берега – это не окружности, и кора не является гладкой, а молния не распространяется по прямой. Природа демонстрирует нам не просто более высокую степень, а совсем другой уровень сложности. Число различных масштабов длин в структурах всегда бесконечно. Существование этих структур бросает нам вызов в виде трудной задачи изучения тех форм, которые Евклид отбросил как бесформенные – задачи исследования морфологии аморфного. Математики, однако, пренебрегли этим вызовом и предпочли все больше и больше отдаляться от природы, изобретая теории, которые не соответствуют ничему из того, что можно увидеть или почувствовать».

Гипотеза: всё, что существует в окружающем нас мире – фрактал.

Цель работы: создание объектов, образы которых похожи на природные.

Объект исследования: фракталы в различных областях науки и реальном мире.

Предмет исследования: фрактальная геометрия.

Задачи исследования:

1. знакомство с понятием фрактала, историей его возникновения и исследованиями Б. Мандельброта, Г. Коха, В. Серпинского и др.;

3. нахождение подтверждения теории фрактальности окружающего мира;

4. изучение применения фракталов в других науках и на практике;

5. проведение эксперимента по созданию собственных фрактальных изображений.

Методы исследования: аналитический, поисковый, экспериментальный.

История возникновения понятия «фрактал»

Фрактальная геометрия, как новое направление в математике, появилась в 1975 году. Понятие «фрактал» впервые ввел в математику американский ученый Бенуа Мандельброт. Фрактал (от англ. «fraction») – дробь, поделенный на части. Определение фрактала, данное Мандельбротом, звучит так: «Фракталом называется структура, состоящая из частей, которые в каком-то смысле подобны целому».

Работая в исследовательском центре компании IBM, сотрудники которого трудились над передачей данных на расстояние, перед Бенуа встала сложная и очень важная задача - понять, как предсказать возникновение шумовых помех в электронных схемах . Мандельброт обратил внимание на одну странную закономерность - графики шумов в разном масштабе выглядели одинаково. Одинаковая картина наблюдалась независимо от того, был ли это график шумов за один день, неделю или час. Стоило изменить масштаб графика, и картина каждый раз повторялась. Вдумываясь в смысл странных узоров, к Бенуа пришло осознание сути фракталов.

Однако первые идеи фрактальной геометрии возникли ещё в 19 веке.

Так Георг Кантор (Cantor, 1845-1918) - немецкий математик, логик, теолог, создатель теории бесконечных множеств, с помощью простой повторяющейся процедуры превратил линию в набор несвязанных точек. Он брал линию и удалял центральную треть и после этого повторял то же самое с оставшимися отрезками. То, что получилось, назвали Пылью Кантора (Рисунок 1).

А итальянский математик Джузеппе Пеано (Giuseppe Peano; 1858-1932) брал линию и заменял ее на 9 отрезков длинной в 3 раза меньшей, чем длина исходной линии. Далее он делал то же самое с каждым отрезком. И так до бесконечности. Позднее аналогичное построение было осуществлено в трехмерном пространстве (Рисунок 2).

Один из первых рисунков фрактала был графической интерпретацией множества Мандельброта, которое родилось благодаря исследованиям Гастона Мориса Жюлиа (Gaston Maurice Julia) (Рисунок 3).

Все фракталы можно поделить на группы, но самые большие из них это:

Геометрические фракталы;

Алгебраические фракталы;

Стохастические фракталы.

Геометрические фракталы

Геометрические фракталы самые наглядные и получаются они путём простых геометрических построений. Берут некоторую ломанную (или поверхность в трехмерном случае), называемую генератором. Затем каждый из отрезков, составляющих ломаную, заменяется на ломаную-генератор, в соответствующем масштабе. В результате бесконечного повторения этой процедуры, получается геометрический фрактал. Примерами геометрических фракталов могут служить:

1) Кривая Коха. В начале ХХ века с бурным развитием квантовой механики перед учеными встала задача найти такую кривую, которая бы наилучшим образом показывала движение броуновских частиц. Для этого кривая должна была обладать следующим свойством: не иметь касательной ни в одной точке. Математик Кох предложил одну такую кривую: берём единичный отрезок, разделяем на три равные части и заменяем средний интервал равносторонним треугольником без этого сегмента. В результате образуется ломаная, состоящая из четырех звеньев длины 1/3. На следующем шаге повторяем операцию для каждого из четырёх получившихся звеньев и т. д.

Предельная кривая и есть кривая Коха (Рисунок 4). Выполнив аналогичные преобразование на сторонах равностороннего треугольника можно получить фрактальное изображение снежинки Коха.

2) Кривая Леви. Берётся половина квадрата и каждая сторона заменяется таким же фрагментом. Операция повторяется много раз и в конечном итоге получается кривая Леви (Рисунок 5).

3) Кривая Минковского. Фундаментом является отрезок, а генератором - ломаная из восьми звеньев (два равных звена продолжают друг друга) (Рисунок 6).

4) Кривая Пеано (Рисунок 2).

5) Кривая дракона (Рисунок 7).

6) Дерево Пифагора. Построено на фигуре, известной как «Пифагоровы штаны», где на сторонах прямоугольного треугольника расположены квадраты. Впервые дерево Пифагора построил, используя обычную чертёжную линейку (Рисунок 8).

7) Квадрат Серпинского. Известен как «решётка» или «салфетка» Серпинского (Рисунок 9). Квадрат делится прямыми, параллельными его сторонам, на 9 равных квадратов. Из квадрата удаляется центральный квадрат. Получается множество, состоящее из 8 оставшихся квадратов "первого ранга". Поступая точно так же с каждым из квадратов первого ранга, получим множество, состоящее из 64 квадратов второго ранга. Продолжая этот процесс бесконечно, получим бесконечную последовательность или квадрат Серпинского.

Алгебраические фракталы

Фракталы, строящиеся на основе алгебраических формул, относятся к алгебраическим фракталам. Это самая крупная группа фракталов. К ним можно отнести фрактал Мандельброта (Рисунок 3), фрактал Ньютона (Рисунок 10), множество Жюлиа (Рисунок 11) и многие другие.

Некоторые алгебраические фракталы поразительным образом напоминают изображения животных, растений и других биологических объектов, вследствие чего получили название биоморфов.

Стохастические фракталы

Стохастические фракталы – ещё одна крупная разновидность фракталов, которые образуются путем многократных повторений случайных изменений каких-либо параметров. При этом получаются объекты очень похожие на природные - несимметричные деревья, изрезанные береговые линии и т. д.

Так если взять прямоугольник и каждому его углу определить цвет. Затем взять его центральную точку и раскрасить её в цвет равный среднему арифметическому цветов по углам прямоугольника плюс некоторое случайное число. Чем больше случайное число - тем более "рваным" будет рисунок. Таким образом, получится фрактал «плазма» (Рисунок 12). А если предположить, что цвет точки это высота над уровнем моря - получим вместо плазмы - горный массив. Именно на этом принципе моделируются горы в большинстве программ. С помощью алгоритма, похожего на плазму строится карта высот, к ней применяются различные фильтры, накладывается текстура и фотореалистичные горы готовы.

Применение фракталов

Фрактальная живопись. Популярное среди цифровых художников направление современного арта. Фрактальные картины необычно и завораживающе действуют на человека, рождая яркие пылающие образы. Сказочные абстракции создаются посредством скучных математических формул, но воображение воспринимает их живыми (Рисунок 13). Любой человек может упражняться с фрактальными программами и генерировать свои фракталы. Подлинное искусство состоит в умении найти неповторимое сочетание цвета и формы.

Фракталы в литературе. Среди литературных произведений находят такие, которые обладают фрактальной природой, т. е. вложенной структурой самоподобия:

1. «Вот дом.

Который построил Джек.

А вот пшеница.

Который построил Джек

А вот весёлая птица-синица,

Которая ловко ворует пшеницу,

Которая в тёмном чулане храница

Который построил Джек…».

Самуил Маршак

2. Блох больших кусают блошки

Блошек тех – малютки-крошки,

Как говорят, ad infinitum.

Джонатан Свифт

Фракталы в медицине. Человеческий организм состоит из множества фракталоподобных структур: кровеносная, лимфотическая и нервная системы, мышцы, бронхи и т. д. (Рисунок 14, 15).

Фракталы в физике и механике. Фрактальные модели природных объектов позволяют моделировать различные физические явления и делать прогнозы.

Американский инженер Натан Коэн, живший в центре Бостона, где была запрещена установка внешних антен, вырезал из алюминиевой фольги фигуру в форме кривой Коха, наклеил ее на лист бумаги и присоединил к приёмнику. Оказалось, что такая антенна работает не хуже обычной. И хотя физические принципы такой антенны до сих пор не изучены, это не помешало Коэну обосновать собственную компанию и наладить их серийный выпуск. В данный момент американская фирма «Fractal Antenna System» производит фрактальные антены для мобильных телефонов.

Фракталы в природе. Природа зачастую создаёт удивительные и прекрасные фракталы, с идеальной геометрией и такой гармонией, что просто замираешь от восхищения. И вот их примеры:

- морские раковины;

Подвид цветной капусты (Brassica cauliflora), папоротник;

Оперение павлина;

https://pandia.ru/text/80/404/images/image009_13.jpg" align="left" width="237" height="178 src=">

Дерево от листочка до корня.

https://pandia.ru/text/80/404/images/image011_13.jpg" alt="Картинка 7 из 122" align="left" width="168" height="113 src=">

Фракталы есть везде и всюду в окружающей нас природе. Вся Вселенная построена по удивительно гармоничным законам с математической точностью. Разве можно после этого думать, что наша планета это случайное сцепление частиц?

Практическая работа

Фрактальное дерево. C помощью панели инструментов «Рисование» программы Microsoft Word и нехитрых преобразований группировки, копирования и вставки, я построил своё фрактальное дерево. Генекатором моего фрактала стали пять отрезков расположенных определённым образом.
.jpg" width="449 height=303" height="303">

Рисунок 8. Дерево Пифагора

Рисунок 9. Квадрат Серпинского

Рисунок 10. Фрактал Ньютона

Рисунок 11. Множество Жюлиа

Рисунок 12. Фрактал «Плазма»

https://pandia.ru/text/80/404/images/image028_2.jpg" width="480 height=299" height="299">

Рисунок 14. Кровеносная система человека

Рисунок 15. Скопление нервных клеток

Статьи по теме