Исаак ньютон сформулировал основные законы получения изображения. Научные открытия исаака ньютона - реферат. Другие варианты биографии

> Что открыл Исаак Ньютон?

Открытия Исаака Ньютона – законы и физика от одного из величайших гениев. Изучите закон всемирного тяготения, три закона движения, гравитация, форма Земли.

Исаак Ньютон (1642-1727) запомнился нам как философ, ученый и математик. Для своего времени он сделал очень много и активно участвовал в научной революции. Интересно, что его взгляды, законы и физика Ньютона будут преобладать еще 300 лет после смерти. По сути, перед нами создатель классической физики.

В последствии слово «ньютоновский» будут вставлять ко всем утверждениям, имеющим связь с его теориями. Исаака Ньютона считают одним из величайших гениев и наиболее влиятельных ученых, чья деятельность охватывала множество научных сфер. Но чем мы ему обязаны и какие открытия совершил?

Три закона движения

Начнем с его знаменитой работы «Математические начала натуральной философии» (1687), в которой раскрывались основы классической механики. Речь идет о трех законах движения, добытых из законов планетарного движения, выдвинутых Иоганном Кеплером.

Первый закон – инерция: объект в состоянии покоя будет оставаться в этом покое, пока на него не повлияет сила, лишенная баланса. Тело в движении продолжит двигаться с изначальной скоростью и в том же направлении, если не столкнется с несбалансированной силой.

Второй: ускорение появляется, когда сила влияет на массу. Чем больше масса, тем больше силы потребуется.

Третий: для каждого действия есть равное противодействие.

Универсальная гравитация

Ньютона стоит поблагодарить за закон всемирного тяготения. Он вывел, что каждая точка массы притягивает другую силой, направленной вдоль линии, пересекающей обе точки (F = G frac{m_1 m_2}{r^2}).

Эти три постулата гравитации помогут ему измерять траектории комет, приливов, равноденствий и прочих явлений. Его доводы разбили последние сомнения касательно гелиоцентрической модели и научный мир принял факт, что Земля не выступает вселенским центром.

Все знают, что Ньютон пришел к выводам о гравитации благодаря случаю с яблоком, упавшим ему на голову. Многие думают, что это всего лишь шуточный пересказ, а ученый вывел формулу постепенно. Но в пользу яблочного прорыва говорят записи в дневнике Ньютона и пересказы его современников.

Форма Земли

Исаак Ньютон полагал, что наша планета Земля сформировалась в виде сплющенного сфероида. Позже догадка подтвердится, но в его времена это была важная информация, которая помогла перевести большую часть научного мира с декартовской системы на механику Ньютона.

В математическом поле он обобщил биномиальную теорему, исследовал степенные ряды, вывел собственный метод для аппроксимации корней функции и поделил на классы большинство кривых кубических плоскостей. Также он делился разработками с Готфридом Лейбницем.

Его открытия были прорывными в физике, математике и астрономии, помогавшие при помощи формул разобраться в строении пространства.

Оптика

В 1666 году он все больше углубляется в оптику. Все началось с изучения свойств света, который он измерял сквозь призму. В 1670-1672 гг. исследовал рефракцию света, показывая, как разноцветный спектр перестраивается в одиночный белый свет при помощи линзы и второй призмы.

В итоге, Ньютон понял, что цвет формируется из-за взаимодействия объектов изначально окрашенных. Кроме того заметил, что объектив любого инструмента страдает из-за светового рассеивания (хроматическая аберрация). Ему удалось решить проблемы при помощи телескопа с зеркалом. Его изобретение считается первой моделью отражающего телескопа.

Кроме того…

Также ему принадлежит заслуга в формулировке эмпирического закона охлаждения и изучение скорости звука. С его подачи появился термин «ньютоновская жидкость» – описание любой жидкости, где вязкие напряжения линейно пропорциональны скорости ее трансформации.

Большое количество времени Ньютон посвящал исследованию не только научных постулатов, но и библейской хронологии и внедрялся в алхимию. Однако многие работы появились только после смерти ученого. Так что Исаак Ньютон запомнился не только как талантливый физик, но и философ.

Чем же мы обязаны Исааку Ньютону? Его идеи были прорывными не только для того времени, но и послужили стартовыми точками для всех последующих ученых. Он подготовил плодородную почву для новых открытый и вдохновил на исследование этого мира. Неудивительно, что у Исаака Ньютона появились последователи, развивающие его идеи и теории. Если вам интересно узнать больше, то на сайте есть биография Исаака Ньютона, где представлены дата рождения и смерти (по новому и старому стилю), самые важные открытия, а также интересные факты о величайшем физике.

Известный каждому школьнику великий английский ученый появился на свет 24 декабря 1642 года по старому стилю или 4 января 1643 года по ныне действующему биография которого берет свое начало в местечке Вулсторп, графство Линкольншир, родился настолько слабым, что его долгое время не решались крестить. Однако мальчик выжил и, несмотря на слабое здоровье в детские годы, сумел дожить до преклонных лет.

Детство

Отец Исаака умер еще до его рождения. Мать, Анна Эйскоу, рано овдовев, вышла замуж еще раз, родив еще троих детей от нового мужа. Она мало уделяла внимания старшему сыну. Ньютон, биография которого в детские годы внешне вроде бы была благополучна, очень страдал от одиночества и отсутствия внимания со стороны матери.

О мальчике больше заботился его дядя, брат Анны Эйскоу. В детстве Исаак был замкнутым молчаливым ребенком, со склонностью мастерить разные технические поделки, такие, например, как и солнечные часы.

Школьные годы

В 1955 году в возрасте 12-ти лет Исаак Ньютон был отдан в школу. Незадолго до этого

умирает его отчим, и мать наследует его состояние, тут же переоформляя его на старшего сына. Школа находилась в Грэнтеме, и Ньютон жил у местного аптекаря Кларка. Во время учебы раскрылись его незаурядные способности, но мать через четыре года вернула 16-летнего юношу домой с целью возложить на него обязанности по управлению фермой.

Но сельское хозяйство - это было не его дело. Чтение книг, стихосложение, конструирование сложных механизмов - в этом был весь Ньютон. Биография его именно в этот момент определила свое направление в сторону науки. Школьный учитель Стокс, дядя Уильям и член Тринити-колледжа при Кембриджском университете Хэмфри Бабингтон объединенными усилиями добились продолжения обучения Исаака Ньютона.

Университеты

В Кембридже краткая биография Ньютона выглядит следующим образом:

  • 1661 год - поступление в Тринити-колледж при университете на бесплатное обучение в качестве студента-«сайзера».
  • 1664 год - успешная сдача экзаменов и перевод на следующую ступень обучения в качестве студента-«школяра», что дало ему право на получение стипендии и возможность продолжать обучение дальше.

В это же время Ньютон, биография которого зафиксировала творческий подъем и начало самостоятельной знакомится с Исааком Барроу, новым преподавателем-математиком, оказавшим сильное влияние на увлечение

В общей сложности Тринити-колледжу был отдан большой отрезок жизни (30 лет) и математика, но именно тут он совершил свои первые открытия (биномиальное разложение для произвольного рационального показателя и разложение функции в бесконечный ряд) и создал, опираясь на учения Галилея, Декарта и Кеплера, универсальную систему мира.

Годы великих достижений и славы

С началом эпидемии чумы в 1665 году занятия в колледже прекратились, и Ньютон уехал в свое поместье в Вулсторп, где и были совершенны самые существенные открытия - оптические эксперименты с цветами спектра,

В 1667 году ученый возвращается в Тринити-колледж, где продолжает свои изыскания в области физики, математики, оптики. Созданный им телескоп вызвал восторженные отзывы в Королевском обществе.

В 1705 году Ньютон, фото которого сегодня можно найти в каждом учебнике, первым был удостоен звания рыцаря именно за научные достижения. Количество открытий в разных сферах науки очень велико. Монументальные труды по математике, основам механики, в области астрономии, оптики, физики перевернули представления ученых о мире.

«Не знаю, как меня воспринимает мир, но сам себе я кажусь только мальчиком, играющим на морском берегу, который развлекается тем, что время от времени отыскивает камешек более пёстрый, чем другие, или красивую ракушку, в то время как великий океан истины расстилается передо мной неисследованным», - мнение Ньютона о самом себе.

Идея всеобщей силы тяготения высказывалась и до Ньютона. О ней размышляли Эпикур, Кеплер, Декарт, Гюйгенс и другие. Кеплер считал, что тяготение обратно пропорционально расстоянию до Солнца и распространяется только в плоскости эклиптики; Декарт считал его результатом вихрей в эфире. Но до Ньютона никто не сумел ясно и математически доказательно связать закон тяготения (силу, обратно пропорциональную квадрату расстояния) и законы движения планет (законы Кеплера).

В своём основном труде «Математические начала натуральной философии» (1687) Исаак Ньютон вывел закон тяготения, основываясь на эмпирических законах Кеплера, известных к тому времени. Он показал, что:

  • наблюдаемые движения планет свидетельствуют о наличии центральной силы;
  • обратно, центральная сила притяжения приводит к эллиптическим (или гиперболическим) орбитам.
  • закон тяготения;
  • закон движения (второй закон Ньютона);
  • система методов для математического исследования (математический анализ).

Тем самым были созданы основы небесной механики. До Эйнштейна принципиальных поправок к указанной модели не понадобилось.

Строго говоря, теория тяготения Ньютона уже не была гелиоцентрической. Планета вращается не вокруг Солнца, а вокруг общего центра тяжести, так как не только Солнце притягивает планету, но и планета притягивает Солнце. Наконец, выяснилась необходимость учесть влияние планет друг на друга. Ньютон вывел теоретически, то есть исходя из начал рациональной механики, один из законов Кеплера, гласящий, что центры планет описывают эллипсы и что в фокусе их орбит находится центр Солнца .

Открытие Ньютона привело к созданию новой картины мира, согласно которой все планеты, находящиеся друг от друга на колоссальных расстояниях, оказываются связанными в одну систему. Дальнейшие исследования Ньютона позволили ему определить массу и плотность планет и Солнца. Он установил, что наиболее близкие к Солнцу планеты отличаются наибольшей плотностью.

Ньютон доказал , что Земля представляет собой шар, расширенный у экватора и сплюснутый у полюсов, а также зависимость приливов и отливов от действия Луны и Солнца на воды морей и океанов.

Со временем оказалось, что закон всемирного тяготения позволяет с огромной точностью объяснить и предсказать движения небесных тел, и он стал рассматриваться как фундаментальный. В то же время ньютоновская теория содержала ряд трудностей. Главная из них - необъяснимое дальнодействие: непонятно, как сила притяжения передавалась через совершенно пустое пространство, причём бесконечно быстро. По существу, ньютоновская модель была чисто математической, без какого-либо физического содержания.

Но выдающиеся успехи небесной механики в XVIII веке подтвердили ньютоновскую модель: первые наблюдаемые отклонения от теории Ньютона в астрономии (смещение перигелия Меркурия) были обнаружены лишь через 200 лет. Вскоре эти отклонения объяснила общая теория относительности (ОТО); ньютоновская теория оказалась её приближённым вариантом. ОТО также наполнила теорию тяготения физическим содержанием и позволила избавиться от дальнодействия(согласно концепции дальнодействия, тела действуют друг на друга без материальных посредников, через пустоту, на любом расстоянии. Такое взаимодействие осуществляется с бесконечно большой скоростью, но подчиняется определённым законам. Примером силы, считавшейся одним из примеров непосредственного действия на расстоянии, можно считать силу всемирного тяготения в классической теории гравитации Ньютона).

О жизни Ньютона

Исаак Ньютон родился в 1642 г. в семье зажиточного фермера в деревне Вулсторп (графство Линкольншир), но отец его умер, не дождавшись рождения сына. Мальчик был слабым и болезненным, его назвали Исааком в честь умершего отца.

Мальчика в детстве воспитывал дядя по матери. В 12-летнем возрасте он поступил учиться в местную школу, где сразу же проявились его необыкновенные способности: он сочинял стихи, много читал, постоянно что-то конструировал. И хотя мать забрала его из школы и хотела оставить хозяйничать в усадьбе, окружающие, в том числе школьные учителя, осознавали, что это необыкновенно одаренный юноша, и смогли уговорить мать разрешить ему учиться в колледже при Кембриджском университете. Круг его интересов и увлечений был настолько велик, что он порой забывал даже про еду: он продолжал мастерить (в основном научные инструменты), увлечённо занимался оптикой, астрономией, математикой, фонетикой, теорией музыки. Затем увлекся математикой. 1665-1667 г.г. - «чумные годы» в Англии. Занятия в учебных заведениях были прекращены, Ньютон уехал домой в Вулсторп, и это были очень плодотворные годы в его научной деятельности: проведя ряд остроумных оптических экспериментов, он доказал, что белый цвет есть смесь цветов спектра. Но самым значительным его открытием в эти годы стал закон всемирного тяготения . Он гласит, что сила гравитационного притяжения между двумя материальными точками массы m 1 и m 2, разделёнными расстоянием , пропорциональна обеим массам и обратно пропорциональна квадрату расстояния между ними - то есть: . Здесь G - гравитационная постоянная, равная .

Общеизвестна легенда о том, что закон тяготения Ньютон открыл, наблюдая падение яблока. Но его теория всеобщего тяготения развивалась постепенно: сравнивая периоды нескольких планет и их расстояния до Солнца, он обнаружил, что из третьего закона Кеплера, связывающего периоды обращения планет с расстоянием до Солнца, следует именно «формула обратных квадратов» для закона тяготения (в приближении круговых орбит). Окончательную формулировку закона тяготения, вошедшую в учебники, Ньютон выписал позднее, после того, как ему стали ясны законы механики. Для него характерно то, что он никогда не искал славы и не спешил опубликовывать свои открытия, и даже этот первый научный труд.

Продолжая заниматься наукой и одновременно преподаванием, он постепенно получил степень бакалавра, магистра, но преподавание не увлекало его. Став придворным капелланом (священник, совмещающий сан с какой-либо дополнительной, как правило светской, должностью), он оставил преподавание.

Он создал телескоп-рефлектор: линза и вогнутое сферическое зеркало, которое сделал и отполировал сам. Первая конструкция Ньютона (1668) оказалась неудачной, но уже следующая давала 40-кратное увеличение превосходного качества.

Слухи о новом инструменте быстро дошли до Лондона, в конце 1671 - начале 1672 г. он демонстрировал рефлектор перед королём, а затем - в Королевском обществе. Ньютон стал знаменит и в январе 1672 года был избран членом Королевского общества. Позднее усовершенствованные рефлекторы стали основными инструментами астрономов, с их помощью были открыты планета Уран, иные галактики, красное смещение.

Особенностью характера Ньютона было то, что он дорожил отношениями с коллегами, но не любил конфликты и споры, а как раз этого было предостаточно, особенно его выводили из себя некомпетентные нападки. Он даже дал себе зарок не ввязываться в научные споры.

В 1684-1686 гг. он работает над книгой «Математические начала натуральной философии». В ней Ньютон строго доказывает, исходя из наблюдаемой картины движения планет и их спутников, что в природе действует закон тяготения. Значительную часть книги занимают расчёты, чертежи и таблицы.

В 1696 г. Ньютон покинул Кембридж и переехал в Лондон, заняв должность смотрителя Монетного двора. Он досконально изучил технологию монетного производства, привёл в порядок документы и учёт за последние 30 лет, содействуя денежной реформе. В Англии этих лет имели хождение неполновесные, а в немалом количестве и фальшивые монеты. Широкое распространение получила обрезка краёв серебряных монет. Теперь же монету начали производить на специальных станках, по ободку их шла надпись, так что преступное стачивание металла стало невозможным. Старая, неполновесная серебряная монета за 2 года была полностью изъята из обращения и перечеканена, выпуск новых монет возрос. Ньютон же предложил обменивать деньги по номиналу, инфляция резко снизилась. Но честный и компетентный человек во главе Монетного двора устраивал не всех. С первых же дней на Ньютона посыпались жалобы и доносы, постоянно появлялись комиссии по проверке. Как выяснилось, многие доносы поступали от фальшивомонетчиков, раздражённых ньютоновскими реформами. Ньютон равнодушно относился к злословию, но никогда не прощал, если оно затрагивало его честь и репутацию. Он лично участвовал в десятках расследований, и более 100 фальшивомонетчиков были выслежены и осуждены. Число фальшивых монет в Англии значительно сократилось. Таким образом, проведённые учёным реформы не только предотвратили экономический кризис, но и через десятилетия привели к значительному росту благосостояния страны.

В 1698 г. Монетный двор посещал русский царь Петр I . В 1700 г. в России была проведена монетная реформа, сходная с английской.

С 1699 г. началось преподавание системы мира Ньютона в Кембридже и в Оксфорде, а Парижская академия наук избрала его своим иностранным членом.

В 1705 году королева Анна возвела Ньютона в рыцарское достоинство. Отныне он сэр Исаак Ньютон . Впервые в английской истории звание рыцаря было присвоено за научные заслуги.

Последние годы жизни Ньютон посвятил написанию «Хронологии древних царств», которой занимался около 40 лет, а также подготовкой третьего издания «Начал», в которое был включен довольно полный справочник по кометам, наблюдавшимся с XIV века. Среди прочих была представлена рассчитанная орбита кометы Галлея , новое появление которой в 1758 г. подтвердило теоретические расчёты (к тому времени уже покойных) Ньютона и Галлея.

В 1725 г. здоровье Ньютона заметно ухудшилось, и он переселился в Кенсингтон неподалёку от Лондона, где и скончался ночью, во сне, в марте 1727 г. Письменного завещания он не оставил, но значительную часть своего крупного состояния незадолго до смерти передал ближайшим родственникам. Похоронен в Вестминстерском аббатстве. На его могиле надпись: «Здесь покоится сэр Исаак Ньютон, дворянин, который почти божественным разумом первый доказал с факелом математики движение планет, пути комет и приливы океанов.

Он исследовал различие световых лучей и появляющиеся при этом различные свойства цветов, чего ранее никто не подозревал. Прилежный, мудрый и верный истолкователь природы, древности и Св. писания, он утверждал своей философией величие Всемогущего Бога, а нравом выражал евангельскую простоту.

Пусть смертные радуются, что существовало такое украшение рода человеческого» .


Великий английский физик Исаак Ньютон родился 25 декабря 1642 г., в день рождественского праздника в деревушке Вульсторп в Линкольншире. Отец его умер еще до рождения ребенка, мать родила его преждевременно и новорожденный Исаак был поразительно мал и хил. Исаак воспитывался в доме своей бабушки. В 12 лет он посещал общественную школу в Грэнтэме, учился слабо. Но зато рано проявил склонность к механике и изобретательству. Так, будучи мальчиком 14 лет он изобрел водяные часы и род самоката. В юности Ньютон любил живопись, поэзию и даже писал стихи. В 1656 г., когда Ньютону было 14 лет умер его отчим, священник Смит. Мать вернулась в Вульсторп и забрала Исаака к себе для помощи в делах. При этом он оказался плохим помощником и предпочитал больше заниматься математикой, чем сельским хозяйством. Его дядя как-то однажды нашел его под изгородью с книгой в руках, занятого решением математической задачи. Πораженный таким серьезным и деятельным направлением еще столь молодого человека, он уговорил мать Исаака отправить его учиться далее.
5 июня 1660 г., когда Ньютону еще не исполнилось 18 лет, он был принят в Тринити-Колледж. Кембриджский университет был в то время одним из лучших в Европе. Ньютон обратил внимание на математику, не столько ради самой науки, с которой был еще мало знаком, сколько потому, что был наслышан об астрономии и хотел проверить, стоит ли заниматься этой таинственной премудростью? О первых трех годах пребывания Ньютона в Кембридже известно немногое. В 1661 г. он был «субсайзером» (subsizzar), так назывались неимущие студенты, в обязанности которых входило прислуживать членам колледжа. Только в 1664 г. он стал настоящим студентом.
В 1665 г. он получил степень бакалавра изящных искусств. Довольно трудно решить вопрос, к ᴋаᴋᴏᴍу времени относятся первые научные открытия Ньютона. Можно только констатировать, что к достаточно раннему. В 1669 г. он получает Люкасовскую кафедру математики, которую до этого занимал его учитель Барроу. В это время Ньютон был уже автором бинома и метода флюксий, исследовал дисперсию света, сконструировал первый зеркальный телескоп, подошел к открытию закона тяготения. Πедагогическая нагрузка Ньютона состояла из одного часа лекций в неделю и из четырех часов репетиций. Как преподаватель он не пользовался популярностью и его лекции по оптике посещались плохо.
Сконструированный в 1671 г. телескоп-рефлектор (второй, улучшенный) послужил поводом для того, чтобы 11 января 1672 г. Ньютон был избран членом Лондонского Королевского общества. При этом он отказался от членства, ссылаясь на отсутствие денежных средств для уплаты членских взносов. Совет Общества счел возможным сделать исключение и ввиду научных заслуг освободил его от уплаты взносов.
Слава его как ученого постепенно росла. Но не чужд Ньютон был и общественной деятельности. Β достаточно сложной политической ситуации того времени университеты Оксфорда и Кембриджа играли существенную роль. За отстаивание позиции независимости университета от королевской власти он был предложен кандидатом и избран в члены парламента. В 1687 г. были изданы его знаменитые «Математические начала натуральной философии». При этом в 1692 г. произошло событие, так потрясшее его нервную систему, что в течение 2-х лет с некоторыми промежутками ϶ᴛᴏᴛ великий человек обнаруживал признаки явного душевного расстройства и были периоды, когда с ним случались припадки настоящего, так называемого тихого умопомешательства, или меланхолии. Как свидетельствует другой великий ученый того времени Христиан Гюйгенс (в письме от 22 мая 1694 г.): «Шотландец доктор Кольм сообщил мне, что знаменитый геометр Исаак Ньютон полтора года назад впал в умопомешательство, частью от чрезмерных трудов, частью же вследствие горести, причиненной ему пожаром, истребившем его химическую лабораторию и многие важные рукописи. Тогда друзья взяли его для лечения и, заключив в комнату, заставили принимать волею или неволею лекарства, от которых здоровье его поправилось настолько, что теперь он начинает уже понимать свою книгу «Начала..». К счастью, болезнь прошла бесследно.
Ньютону было уже 50 лет. Несмотря на свою огромную славу и блестящий успех его книги, жил он в весьма стесненных обстоятельствах, а, иногда, просто нуждался. В 1695 г., материальное положение его, впрочем, изменилось. Близкий друг Ньютона Чарльз Монтегю достиг одного из самых высоких положений в государстве: он был назначен канцлером казначейства. Через него Ньютон получил должность смотрителя монетным двором, приносившую 400-500 фунтов годового дохода. Πод его руководством в 2 года была перечеканена вся монета Англии. В 1699 г. он был назначен директором монетного двора (12-15 тыс. фунтов). Он оставил кафедру и переехал в Лондон окончательно. В 1703 г. Ньютон избирается президентом Королевского общества. В 1704 г. издается вторая по важности его книга. «Оптика». В 1705 г. королева Анна возводит его в рыцарское достоинство, он занимает богатую квартиру, держит слуг, имеет карету для выездов.20 марта 1727 г. в возрасте 85-ти лет Исаак Ньютон скончался и был пышно похоронен в Вестминстерском аббатстве. В честь Ньютона была выбита медаль с надписью: «Счастлив, познавший причины».

Основные открытия Ньютона

Открытие исчисления (анализа) бесконечно малых (дифференциального и интегрального исчисления).
Продолжатель Барроу - своего учителя по математике, Ньютон вводит понятия флюэнт и флюксий. Флюэнта - текущая, переменная величина. У всех флюэнт один аргумент - время. Флюксия - производная функции-флюэнты по времени, то есть флюксии - скорости изменения флюэнт. Флюксии приблизительно пропорциональны приращениям флюэнт, образующиеся в равные, весьма малые промежутки времени.
Был дан способ вычисления флюксий (нахождения производных), основанный на способе разложения в бесконечные ряды. Πопутно решены многие задачи: нахождения минимума и максимума функции, определение кривизны и точек перегиба, вычисления площадей, замыкаемых кривыми. Разработана Ньютоном и техника интегрирования (путем развертывания выражений в бесконечные ряды).
Видно, насколько владели Ньютоном образы непрерывного движения при создании математического анализа . Равномерно текущая независимая переменная у него, как правило, время. Флюэнты - это переменные величины, к примеру, путь, меняющиеся в зависимости от времени. Флюксии - скорости изменения этих величин. Флюэнты обозначаются буквами x, y …, а флюксии теми же буквами с точками над ними.
Независимо от Ньютона к открытию дифференциального и интегрального исчислений пришел знаменитый немецкий философ Готфрид Вильгельм Лейбниц (1646-1716). Между ними и их последователями даже состоялось судебное разбирательство о приоритете открытия анализа. Как выяснилось позже, Международную комиссию по разрешению спора, возглавлял сам Ньютон (тайно) и она признала его приоритет. Впоследствии оказалось, что школой Лейбница был разработан более красивый вариант анализа, но в варианте Ньютона более выражена и важна «физичность» метода. В общем, и Лейбниц и Ньютон работали независимо, но Ньютон раньше завершил работу, а Лейбниц раньше опубликовал. Сейчас в анализе используется в основном подход Лейбница, в том числе и его бесконечно малые числа, отдельное существование которых Ньютон не рассматривал.
Оптические исследования.
В этой области физики Ньютону принадлежат большие заслуги. «Оптика» - один из главных его трудов.
Главной заслугой было исследование дисперсии (разложения) света в призме и установление сложного состава света: «Свет состоит из лучей различной преломляемости». Πоказатель преломления зависит от цвета света. Ньютон провел знаменитый опыт со скрещенными призмами, показавший, что разложение белого света на цвета радуги - не свойство стеклянной призмы, а свойство самого света. Был выделен монохроматический свет. Главное, что цветность луча его изначальное и неизменное свойство. «Всякий однородный свет имеет собственную окраску, отвечающую степени его преломляемости, и такая окраска не может измениться при отражениях и преломлениях»,
Созданный Ньютоном зеркальный телескоп-рефлектор - следствие убежденности Ньютона в принципиальной неустранимости хроматической аберрации линз вследствие дисперсии света в них. При этом Ньютон, что дисперсия одинакова для всех веществ.
Ньютон изучает цвета тонких пленок. Придумывает замечательное расположение линз, которое ныне известно под именем установки для получения ньютоновых колец, и в отраженном и в проходящем свете. Он установил, что квадраты диаметров колец возрастают в арифметической прогрессии нечетных или четных чисел. Тем самым он внес вклад в изучение явления интерференции света. В последней части «Оптики» Ньютон описывает некоторые дифракционные явления.
В области установления природы света Ньютон был сторонником корпускулярной теории. Собственно, он ее обосновал, в противовес волновой теории Гюйгенса.
Тяготение
Проблемой тяготения Ньютон начал заниматься в те же 1665-66 гг., что и оптикой, и математикой. Πоначалу он истолковывает наличие тяготения теорией эфира в картезианском духе. Качественная картина подсказывала закон зависимости силы тяготения от расстояния обратно пропорционально квадрату последнего. Отсюда было недалеко до вывода, что Луна удерживается на своей орбите действием земной тяжести, ослабленной пропорционально квадрату расстояния. Можно было вычислить напряжение поля тяжести на лунной орбите и сравнить его с величиной центростремительного ускорения. Πервые расчеты показали расхождения. Но более точные измерения радиуса Земли, проведенные Пикаром, позволили получить удовлетворительное совпадение. Луна, несомненно, непрерывно падает на Землю, одновременно удаляясь от нее равномерным движением по касательной.
Далее из законов Кеплера, Ньютон математическим анализом приходит к выводу, что силой, удерживающей планеты на орбитах вокруг Солнца, является сила взаимного тяготения, убывающая пропорционально квадрату расстояния.
Закон тяготения оставался гипотезой (экспериментальное доказательство получено лишь в XVIII веке), но Ньютон неоднократно проверив его в астрономии, более не сомневался. Ныне закон тяготения представлен компактной формулой: F=G m_1 m_2 /(r^2) . Этот закон дал динамическую основу всей небесной механике. Более 200 лет теоретическая физика и астрономия рассматривались в соответствие с этим законом, пока не возникли квантовая механика и теория относительности. Ньютон полагал его выведенным чисто индуктивным путем. Сам он находил действие на расстояние бессмысленным, но отказывался публично обсуждать природу сил тяжести. В заключении «Начал…» Ньютон делает следующее утверждение: «движущиеся тела не испытывают сопротивления от вездесущия божия», т.е. бог является посредником пр действии на расстоянии. «Причину … этих свойств силы тяготения я до сих пор не мог вывести из явлений, гипотез же я не измышляю».
«Математические начала натуральной философии»
Вершиной научного творчества Ньютона был именно ϶ᴛᴏᴛ труд, после издания которого он во многом отошел от научных трудов. Величие замысла автора, подвергнувшего математическому анализу систему мира, глубина и строгость изложения поразили современников /2/.
В предисловии Ньютона (есть еще предисловие Котса, его ученика) мимоходом набрасывается программа механической физики: «Сочинение это нами предлагается как математические основания физики. Вся трудность физики, как будет видно, состоит в том, чтобы по явлениям движения распознать силы природы, а затем по этим силам объяснить остальные явления (так, в 1-х и 2-х книгах по наблюдаемым явлениям выводится закон действия центральных сил, и в третьей найденный закон применяется к описанию системы мира). Было бы желательно вывести из начал механики и остальные явления природы, рассуждая подобным же образом, ибо многое заставляет меня предполагать, что все ϶ᴛᴎ явления обусловливаются некоторыми силами, с которыми частицы тел, вследствие причин, покуда неизвестных, или стремятся друг к другу и сцепляются в правильные фигуры, или же взаимно отталкиваются и удаляются друг от друга».
«Начала…» начинаются с раздела «Определения», где даны определения количества материи, инерционной массы, центростремительной силы и некоторых других. Заключается ϶ᴛᴏᴛ раздел «Поучением», где дается определение пространства, времени, места, движения. Далее идет раздел аксиом движения, где даны знаменитые 3 закона механики Ньютона, законы движения и ближайшие следствия из них. Следовательно, мы наблюдаем определенное подражание «Началам …» Евклида.
Далее «Начала …» распадаются на 3 книги. Πервая книга посвящена теории тяготения и движения в поле центральных сил, вторая - учению о сопротивления среды. В третьей книге Ньютон изложил установленные законы движения планет, Луны, спутников Юпитера и Сатурна, дал динамическую интерпретацию законов, изложил «метод флюксий», показал, что сила, притягивающая к Земле камень, не отличается по своей природе от силы, удерживающей на орбите Луну, а ослабление притяжения связано только с увеличением расстояния.
Благодаря Ньютону Вселенная стала восприниматься как отлаженный часовой механизм. Регулярность и простота основных принципов, которыми объяснялись все наблюдаемые явления, расценивались Ньютоном как доказательство бытия бога: «Такое изящнейшее соединение Солнца, планет и комет не могло произойти иначе как по намерению и во власти премудрого и могущественного существа. Сей управляет всем не как душа мира, а как властитель Вселенной, и по господству своему должен именоваться Господь бог Вседержитель».
Литература
5. Жмудь Л.Я. Πифагор и его школа.- Л.: «Наука», 1990.
1. Гайденко П.П. Эволюция понятия науки. - М.: «Наука», 1980.
1. Гайденко П.П. Эволюция понятия науки (XVII - XVIII вв.) - М.: Наука, 1987.
2. Кудрявцев П.С. История физики. Т,1. - М.: Изд-во «Просвещение», 1956.
1. Рожанский И.Д. Развитие естествознания в эпоху античности. - М.: «Наука», 1979.
3. Аристотель. Физика. Собр. соч. Т.3. - М.: «Мысль», 1981.
Фрэзер Дж. Дж. Золотая ветвь: Исследование магии и религии. - М.: Политиздат, 1980.
4. Галилей Г. Избранные труды: В 2 т. - М.:Наука, 1964.
5. Койре А. Очерки истории философской мысли О влиянии философских концепций в развитии теорий. - М.: «Наука» 1985.

1. Галилео Галилей. Диалог о двух главнейших системах мира Птоломеевой и Коперниковой. - М.-Л.: « ОГИЗ», 1948.
2. Леонардо да Винчи. Избранные естественнонаучные произведения. - М, 1955.
3. Н. Кузанский. Сочинения в 2-х т. - М.: Мысль, 1979.
4. Н. Коперник О вращениях небесных сфер. - М.: Наука, 1964.
5. Дынник М.А. Мировоззрение Джордано Бруно. - М., 1949.
2. Спасский Б.И. История физики в « т. - М.: Изд-во МГУ, 1963.
3. Дорфман Я.Г. Всемирная история физики с древнейших времен до донца ХV111 в. - М: «Наука», 1974.
6. Философский энциклопедический словарь. - М.: «Советская энциклопедия», 1983.
7. Зубов В.П. Аристотель. - М., 1963.
1. Плутарх. Сравнительные жизнеописания. Т.1. - М.: Изд-во АН СССР, 1961. 2. Дильс Г. Античная техника. - М.-Л.: «ОПТИ», 1934.
3. Р. Ньютон Преступление Клавдия Птолемея. - М.: Наука, 1985
4. Нейгебауэр О. Точные науки в древности. - М.: «Наука», 1968.
2. Диоген Лаэртский. О жизни, учениях и изречениях знаменитых философов. - М.: «Мысль», 1986.
3. Платон. Диалоги. - М.: «Мысль», 1986.
4. Платон Собр. Соч. т.3. - М.: «Мысль», 1994
6. Гейзенберг В. Физика и философия. Часть и целое. - М.: Наука, 1989.
8. Спасский Б.И. История физики. В 2 т. - М.: Изд-во МГУ, 1963.
4. Ван-дер-Варден Б. Пробуждающаяся наука: Рождение астрономии. - М.: «Наука», 1991.
5. Ван-дер-Варден Б. Πробуждающаяся наука: математика древнего Египта, Вавилона и Греции. - М.: 1957.
8. Зайцев А.Н. Культурный переворот в Древней Греции V111 - V вв. до н.э. - Л., 1985.
1. Нейгебауэр О. Точные науки в древности. - М.: «Наука», 1968.

Исаак Ньютон появился на свет 4 января 1643 года в небольшой британской деревушке Вулсторп, располагавшейся на территории графства Линкольншир. Хилый, преждевременно покинувший лоно матери мальчик пришел в этот мир накануне Английской гражданской войны, вскоре после смерти своего отца и незадолго до празднования Рождества.

Ребенок был настолько слабым, что на протяжении долгого времени его даже не крестили. Но все же маленький Исаак Ньютон, названный так в честь своего отца, выжил и прожил очень долгую для семнадцатого века жизнь – 84 года.

Отец будущего гениального ученого был мелким фермером, однако довольно успешным и состоятельным. После смерти Ньютона-старшего его семья получила несколько сотен акров полей и лесных угодий с плодородной почвой и внушительную сумму размером в 500 фунтов стерлингов.

Мать Исаака, Анна Эйскоу, вскоре снова вышла замуж и родила своему новому супругу троих детей. Анна уделяла больше внимания младшим отпрыскам, а воспитанием ее первенца поначалу занималась бабушка Исаака, а потом его дядя Уильям Эйскоу.

В детстве Ньютон увлекался живописью, поэзией, самозабвенно изобретал водяные часы, ветряную мельницу, мастерил бумажных змеев. При этом он по-прежнему был весьма болезненным, а также крайне необщительным: веселым играм со сверстниками Исаак предпочитал собственные увлечения.


Физик в молодости

Когда ребенка отправили в школу, его физическая слабость и плохие коммуникативные навыки однажды даже стали причиной того, что мальчика избили до полуобморочного состояния. Это унижение Ньютон стерпеть не мог. Но, конечно, в одночасье приобрести атлетическую физическую форму он не мог, поэтому мальчик решил тешить свое самоуважение иначе.

Если до этого случая он достаточно плохо учился и явно не был любимчиком учителей, то после начал серьезно выделяться по успеваемости среди своих одноклассников. Постепенно он стал лучшим учеником, а также еще серьезнее, чем до этого, начал интересоваться техникой, математикой и удивительными, необъяснимыми явлениями природы.


Когда Исааку исполнилось 16 лет, мать забрала его обратно в поместье и попыталась возложить на повзрослевшего старшего сына часть забот по ведению хозяйства (второй муж Анны Эйскоу к тому времени тоже скончался). Однако парень только и занимался тем, что конструировал хитроумные механизмы, «проглатывал» многочисленные книги и писал стихи.

Школьный учитель молодого человека, мистер Стокс, а также его дядя Уильям Эйскоу и знакомый Хэмфри Бабингтон (по совместительству – член Кембриджского Тринити-колледжа) из Грэнтема, где будущий всемирно известный ученый посещал школу, уговорили Анну Эйскоу позволить одаренному сыну продолжить обучение. В результате коллективных уговоров в 1661 году Исаак завершил учебу в школе, после чего успешно выдержал вступительные экзамены в Кембриджский университет.

Начало научной карьеры

Как студент Ньютон имел статус «sizar». Это означало, что он не платил за свое образование, однако должен был выполнять в университете разноплановые работы, либо оказывать услуги более богатым студентам. Исаак мужественно выдержал это испытание, хотя по-прежнему крайне не любил чувствовать себя угнетенным, был нелюдим и не умел заводить друзей.

В то время философию и естествознание в знаменитом на весь мир Кембридже преподавали по , хотя на тот момент миру уже были продемонстрированы открытия Галилея, атомистическая теория Гассенди, смелые труды Коперника, Кеплера и других выдающихся ученых. Исаак Ньютон с жадностью поглощал всю возможную информацию по математике, астрономии, оптике, фонетике и даже теории музыки, какую только мог найти. При этом он нередко забывал про еду и сон.


Исаак Ньютон изучает преломление света

Самостоятельную научную деятельность исследователь начал в 1664 году, составив перечень из 45 проблем в человеческой жизни и природе, которые пока не были решены. Тогда же судьба свела студента с одаренным математиком Исааком Барроу, который начал работать на математической кафедре колледжа. Впоследствии Барроу стал его учителем, а также одним из немногих друзей.

Еще сильнее заинтересовавшись математикой благодаря одаренному преподавателю, Ньютон выполнил биномиальное разложение для произвольного рационального показателя, которое стало его первым блестящим открытием в математической области. В том же году Исаак получил звание бакалавра.


В 1665-1667 годах, когда по Англии прокатилась чума, Великий Лондонский пожар и крайне затратная война с Голландией, Ньютон ненадолго осел в Вусторпе. В эти годы он направил свою основную деятельность на открытие оптических тайн. Пытаясь выяснить, как избавить линзовые телескопы от хроматической аберрации, ученый пришел к исследованию дисперсии. Суть экспериментов, которые ставил Исаак, была в стремлении познать физическую природу света, и многие из них до сих пор проводят в учреждениях образования.

В результате Ньютон пришел к корпускулярной модели света, решив, что его можно рассматривать как поток частиц, которые вылетают из некоторого источника света и осуществляют прямолинейное движение до ближайшего препятствия. Такая модель хоть и не может претендовать на предельную объективность, однако стала одной из основ классической физики, без которой не появились бы и более современные представления о физических явлениях.


Среди любителей собирать интересные факты давно бытует заблуждение о том, что этот ключевой закон классической механики Ньютон открыл после того, как ему на голову упало яблоко. В действительности Исаак планомерно шел к своему открытию, что понятно из его многочисленных записей. Легенду о яблоке популяризовал авторитетный в те времена философ Вольтер.

Научная известность

В конце 1660-ых годов Исаак Ньютон вернулся в Кембридж, где получил статус магистра, собственную комнату для жизни и даже группу юных студентов, у которых ученый стал преподавателем. Впрочем, преподавание явно не было «коньком» одаренного исследователя, и посещаемость его лекций заметно хромала. Тогда же ученый изобрел телескоп-рефлектор, который прославил его и позволил Ньютону вступить в Лондонское королевское общество. Посредством данного приспособления было сделано множество потрясающих астрономических открытий.


В 1687 году Ньютон опубликовал, пожалуй, самую важную свою работу – труд под названием «Математические начала натуральной философии». Исследователь и до этого издавал свои труды, но этот имел первостепенное значение: он стал основной рациональной механики и всего математического естествознания. Здесь содержался хорошо всем известный закон всемирного тяготения, три известных до сих пор закона механики, без которых немыслима классическая физика, вводились ключевые физические понятия, не подвергалась сомнениям гелиоцентрическая система Коперника.


По математическому и физическому уровню «Математические начала натуральной философии» были на порядок выше, чем изыскания всех ученых, работавших над этой проблемой до Исаака Ньютона. Здесь не было недоказанной метафизики с пространными рассуждениями, безосновательными законами и неясными формулировками, которой так грешили работы Аристотеля и Декарта.

В 1699 году, когда Ньютон работал на административных должностях, в университете Кембриджа начали преподавать его систему мира.

Личная жизнь

Женщины ни тогда, ни с годами не проявляли особой симпатии к Ньютону, и за всю свою жизнь он ни разу не женился.


Смерть великого ученого наступила в 1727 году, причем на его похороны собрался практически весь Лондон.

Законы Ньютона

  • Первый закон механики: всякое тело покоится или остается в состоянии равномерного поступательного движения, пока этот состояние не будет скорректировано приложением внешних сил.
  • Второй закон механики: изменение импульса пропорционально приложенной силе и осуществляется по направлению ее воздействия.
  • Третий закон механики: материальные точки взаимодействуют друг с другом по прямой, их соединяющей, с равными по модулю и противоположными по направлению силами.
  • Закон всемирного тяготения: сила гравитационного притяжения между двумя материальными точками пропорциональна произведению их масс, умноженному на гравитационную постоянную, и обратно пропорциональна квадрату расстояния между этими точками.
Статьи по теме