Апоптоз. механизмы апоптоза. Пути апоптоза и их схемы Внутренний путь апоптоза статья на английском языке

Термин"апоптоз", предложенный в 1972 г. английскими учеными J.F.R. Кеrr, А.Н. Wyllie и A.R. Currie, состоит из двух греческих слов и означает в буквальном смысле "отделение лепестков от цветов", а применимо к клетке - особый тип смерти путем разделения ее на части (" апоптозные тельца "), которые впоследствии фагоцитируются соседними клетками разного типа.

Термин "программированная клеточная смерть" отражает функциональное назначение этого процесса, представляющего естественную часть жизни многоклеточного организма, связанного с метаморфозом и развитием [ Hedgecock E.M., Salston J.E. 1983 , Oppenheim R.W. 1991 ].

В генетическом аппарате многоклеточных организмов - животных, растений и грибов заложена программа гибели клеток. Это специальная программа, которая при определенных обстоятельствах может привести клетку к гибели. При нормальном развитии эта программа направлена на удаление избыточно образовавшихся клеток -"безработных", а также клеток -"пенсионеров", переставших заниматься общественно полезным трудом. Другая важная функция клеточной гибели - удаление клеток -"инвалидов" и клеток- "диссидентов" с серьезными нарушениями структуры или функции генетического аппарата. В частности, апоптоз - один из основных механизмов самопрофилактики онкологических заболеваний [ Thompson ea 1995 ].

Апоптоз играет главную роль как в развитии так и в гомеостазе [ Steller ea 1997 ]. Клетки умирают от апоптоза в развивающемся эмбрионе в ходе морфогенеза или синантогенеза и во взрослых животных в ходе обновления тканей. Система программируемой клеточной смерти - существенный фактор иммунитета , поскольку гибель зараженной клетки может предотвратить распространение инфекции по организму. Формообразовательные процессы в онтогенезе, позитивная и негативная селекция Т- и В-лимфоцитов у животных, гипер-чувствительный ответ растений на вторжение патогена, осенний листопад - лишь несколько примеров программируемой клеточной смерти (апоптоза).

Определенные клетки организма обладают уникальными сенсорами, называемыми рецепторами смерти , расположенными на поверхности клеток. Рецепторы смерти детектируют присутствие межклеточных сигналов смерти и в ответ на это быстро запускают внутриклеточный механизм апоптоза.

Поскольку физиологическая роль апоптоза очень существенна, нарушения этого процесса могут быть весьма вредными. Так, несвоевременный апоптоз определенных мозговых нейронов оказывает влияние на образование нарушений, таких как болезни Альтцгеймера и Паркинсона , в то время как неспособность делящихся клеток перейти к апоптозу после случившихся существенных нарушений ДНК способствует развитию рака.

Другим механизмом, направленным на подавление апоптоза, является активация транскрипционного фактора NF-кВ . Известен целый ряд антиапоптозных белков, кодируемых генами, экспрессия которых возрастает под действием NF-кВ, что приводит к предотвращению гибели клетки [ O"Connor et al., 2000 ]. Таким образом, регуляция апоптоза представляет собой пример сбалансированного механизма с многократным дублированием противовесов, призванным обеспечить надежный контроль за реализацией столь важной для клетки программы и в то же время делающим ее очень зависимой от внешних и внутренних воздействий.

В развитии апоптоза выделяют 3 морфологичеси различимых стадии: сигнальную (индукторную), эффекторную и деградации (деструкции). Индукторами апоптоза могут быть как внешние (внеклеточные) факторы, так и внутриклеточные сигналы. Сигнал воспринимается рецептором и далее последовательно передается молекулам-посредникам (мессенджерам) различного порядка и достигает ядра, где происходит включение программы клеточного "самоубийства" путем активации летальных и/или репрессии антилетальных генов. В ядре регистрируются первые морфологические признаки апоптоза - конденсация хроматина с формированием его осмиофильных скоплений, прилежащих к ядерной мембране. Позже появляются инвагинации (вдавления) ядерной мембраны, и происходит фрагментация ядра. В основе деградации хроматина лежит ферментативное расщепление ДНК [ Arends ea 1990 , Wyllie ea 1980 ]. Сначала образуются фрагменты, включающие 700, 200-250, 50-70 тыс. пар оснований, затем - фрагменты, содержащие 30-50 тыс. пар оснований. После реализации этого этапа процесс становится необратимым. Затем наступает межнуклеосомная дезинтеграция ДНК, т.е. разрывы нитей ДНК, находящихся между нуклеосомами. При этом образуются фрагменты, кратные по величине 180-190 пар оснований, что соответствует протяженности нити ДНК в пределах одной нуклеосомы. Отделившиеся фрагменты ядра, ограниченные мембраной, называют апоптотическими тельцами. В цитоплазме происходит расширение эндоплазматического ретикулума, конденсация и сморщивание гранул. Важнейшим признаком апоптоза является снижение трансмембранного потенциала митохондрий и выход в цитоплазму различных апоптогенных факторов (цитохрома с; прокаспаз 2, 3, 9; апоптоз-индуцирующего фактора). Именно нарушению барьерной функции митохондриальных мембран отводят ключевую роль в развитии многих типов апоптоза. Клеточная мембрана утрачивает ворсинчатость и образует пузыревидные вздутия. Клетки округляются и отделяются от субстрата. На поверхности клетки экспрессируются различные молекулы, распознаваемые фагоцитами - фосфосерин, тромбоспондин, десиалированные мембранные гликоконъюгаты, в результате чего происходит поглощение тела клетки другими клетками и его деградация в окружении лизосом фагоцитарных клеток [

В развитии апоптоза можно выделить три фазы. Суть первой из них - рецепция сигнала и начальные этапы его передачи; эта фаза обратима. Вторая фаза - активация каспаз - является ключевым событием в развитии апоптоза; она приводит к необратимым последствиям. Третья фаза состоит в реализации гибели клетки, запрограммированной на предыдущем этапе. Проявления первой фазы развития апоптоза многообразны. Вторая и третья фазы протекают более стандартно. По современным представлениям пути и механизмы запуска апоптоза сводятся к двум механизмам - рецепторному и митохондриальному, которые схематически отображены на рисунке 51.

Наиболее детально изучен рецепторный механизм включения апоптоза . На поверхности клеток могут экспрессироваться специализированные Рц, передающие сигналы к развитию апоптоза. Их общее обозначение –Рц «смерти» (death receptors - DR). Эти Рц относятся к семейству Рц фактора некроза опухоли (TNF). От других Рц этой группы они отличаются наличием в цитоплазматической части специального домена «смерти» (death domain - DD), необходимого для включения внутриклеточного сигнала, приводящего к развитию апоптоза. К настоящему времени описано 6 DR–Рц. Среди них наиболее известен Fas–Рц (АРО–1, CD95). Его лигандом служит тримерная молекула, относящаяся к семейству TNF - Fas–лиганд (FasL, CD178) . Известны мембранная и растворимая формы FasL, из которых первая является значительно более эффективным индуктором апоптоза клеток фенотипа CD95, чем вторая. К DR-семейству относится такжеTNF–R1 - Рц TNF 1–го типа (p55, CD120A), тогда как Рц 2–го типа (р75, CD120B) лишен домена «смерти» и непосредственно не включает апоптогенные сигналы . Лигандом для TNF–R1 служат молекулы семейства TNF - TNF a и лимфотоксин a (TNF b). Рц DR3 передает сигналы от недостаточно охарактеризованной молекулы DR3L (APO3-L). DR4 и DR5 служат Рц для молекулы TRAIL. Этот тример, также относящийся к семейству TNF, связывается, кроме того, с Рц-ловушками DcR1 и DcR2, обусловливающими разрушение TRAIL. В связи с этим TRAIL не играет существенной роли в индукции апоптоза нормальных клеток, однако он индуцирует апоптоз опухолевых клеток, на которых Рц-ловушки отсутствуют или экспрессируются слабо . Природа лиганда DR6 пока не установлена.

Во всех случаях взаимодействие тримерных лигандов с Рц приводит к тримеризации последних, что является обязательным условием их функционирования в качестве передатчиков апоптотических сигналов. При этом домены смерти приобретают способность взаимодействовать с аналогичными доменами адаптерных белков FADD (Fas–associated death domain) и TRADD(TNF–receptor death domain). FADD узнает домены смерти в составе прокаспазы 8 и, взаимодействуя с ними, обусловливает активацию каспазы 8. Результат действия TRADD аналогичен, но он реализуется через посредство FADD. Формирующиеся в результате указанных взаимодействий молекулярные комплексы называют DISC (Death–inducing signaling complex). Рецепторный путь включения апоптоза не требует синтеза РНК и белка de novo . Поскольку апоптоз при этом запускается путём активного воздействия на клеточные Рц, он обозначается как активный апоптоз.



Другая группа механизмов включения апоптоза реализуется в условиях дефицита ростовых факторов, когда клетка как бы предоставляется сама себе (апоптоз «по умолчанию» - рис. 51) . Данную форму апоптоза называют ещё пассивным апоптозом. Механизм пассивного апоптоза используется при гибели клеток под действием стрессорных факторов (в том числе облучения), глюкокортикоидов и ряда токсических агентов, например цитостатиков, применяемых в онкологической практике. В этих случаях основой апоптоза служат процессы, запускаемые в митохондриях и сводящиеся к повышению проницаемости их мембраны для проапоптотических факторов.

Рис . 51 . Развитие апоптоза : показаны два механизма включения апоптоза - обусловленный повышением проницаемости митохондрий (апоптоз «по умолчанию») и рецепторный («активационный»). Оба механизма приводят к реализации апоптоза по единому зффекторному механизму. TRAIL - лиганд, индуцирующий связанный с фактором некроза опухоли апоптоз; FasL - лиганд для РцFas (от Fas ligand); TNFRI - Рц для фактора некроза опухоли I (от TNF receptor I); DR - Рц «смерти» (от - Death receptor); FADD - домен «смерти» Рц Fas (от Fas–associated death domain);TRADD - домен «смерти» Рц для фактора некроза опухоли (от TNF–receptor associated death domain). Около значков, символизирующих факторы, указано их название. Сплошные стрелки означают превращения, пунктирные - влияния, штриховые - перемещения факторов. Пояснения в тексте.



Многие клетки (возможно большинство из них) нуждаются в специальных сигналах для поддержания своей жизнеспособности. Источником таких сигналов выживания обычно служат цитокины и контактные взаимодействия с окружающими клетками. В отсутствие сигналов выживания в клетке нарушается функция митохондрий, в частности механизмы гликолиза и дефосфорилирования АТФ. Поскольку АДФ и продукт гликолиза пируват необходимы для нормального осуществления окислительного фосфорилирования, транспорта электронов и создания градиента протонов, эти процессы нарушаются, что приводит к повреждению мембраны митохондрий .

Параллельно срабатывает механизм, который реализуется белками - продуктами протоонкогенов семейства Вс1–2 . Эти белки делятся на несколько групп. Часть белков содержат 3–4 ВН–домена (ВН - от Bcl–2 homology) и разделяется на анти–апоптотические (Bcl–2, Bcl–X L , Mcl–1 и т.д.) и про-апоптотические (Вах, Bak, Bcl–X S и т.д.) факторы. Особую группу составляют «только-ВН3»-белки («ВН3-only» - Bad, Bid, Bik, Bim, Noxa, Вbс3 и т.д.), которые, в соответствии с названием содержат только один ВН–домен - ВН3, а в остальном отличаются от белков рассматриваемого семейства. Именно «только-ВН3»-белкам, прежде всего Bim, мобилизуемому из цитоскелета, отводят роль пусковых факторов апоптоза по умолчанию . Экспрессия или активация «только-ВН3»-белков происходит в условиях дефицита цитокинов и других факторов выживания, а также при активации белка p53, являющегося сенсором разрывов ДНК (в последнем случае активируются «только-ВН3»–факторы Noxa и Вbс3) . «Только-ВН3»-белки блокируют анти–апоптотические факторы типа Bcl–2, образуя с ними димеры, и способствуют проявлению активности проапоптотических факторов. Ключевым проявлением активности последних является формирование трансмембранных пор, которые образуются в результате олигомеризации Вах и Вак, в норме подавляемой антиапоптотическими факторами.

Через поры в мембране митохондрий в цитозоль выходят цитохром С и фактор APAF–1 (Apoptose protease activation factor 1). APAF–1 освобождается из мембраны митохондрий: фактор Bikвытесняет его из гетеродимера с факторами Вс1–2 или BCL–X L , В составе которого он удерживается в мембране. APAF–1 и цитохром С в присутствии АТФ образуют комплекс с неактивной каспазой - прокаспазой 9. Этот комплекс называют апоптосомой. В ней под влиянием APAF–1, распознающего гомологичный домен в прокаспазе, происходит активация каспазы 9 . В отличие от рецепторного механизма реализация митохондриального пути включения апоптоза требует экспрессии ряда генов и синтеза de novo РНК и белка.

До активации каспаз процесс развития апоптоза обратим. Блокада распространения апоптотического сигнала по раным путям происходит по-разному. Рецепторный механизм апоптоза может быть прерван благодаря активации группы факторов FLIP (FLICE-inhibitory protein; FLICE - старое название каспазы 8), которые содержат эффекторные домены смерти, свойственные каспазе 8, но лишены её каталитического центра. В результате они конкурентно блокируют действие этой каспазы . Митохондриальный механизм включения апоптоза блокируется упоминавшимися выше антиапоптотическими факторами семейства Вс1–2, прежде всего самим Вс1–2 и Bcl–X L . Эффект Вс1–2 связан главным образом с его способностью связывать «только-ВН3»–факторы и предотвращать их стимулирующее действие на формирование комплексов Bax-Bak. Bcl–2 способен также связываться непосредственно с Вах и Вак, а также с Apaf–1. Эти механизмы препятствуют формированию трансмембранных пор в митохондриях и/или формированию апоптосом. Необходимо упомянуть также о «сфингомиелиновом реостате» - механизме контроля баланса пролиферации и апоптоза, осуществляемого метаболитами сфингомиелина, среди которых роль проапоптотического фактора принадлежит церамиду.

Итак, оба пути включения апоптоза приводят к активации каспаз. Каспазы - это группа цистеиновых протеаз, которые расщепляют полипептидную связь после остатков аспарагиновой кислоты. Различие отдельных каспаз по специфичности сводится к распознаванию различных тетрапептидов, прилегающих к месту разрыва с NH 2 –конца . Рецепторный путь приводит к активации каспазы 8 (реже - каспаз 2 и 10), митохондриальный - к активации каспазы 9. Эти ферменты относятся к группе инициаторных каспаз. В неактивной форме (прокаспазы) они содержат наряду с двумя протеазными доменами два домена смерти (прокаспазы 8 и 10) для взаимодействия с FADD и другими адаптерными белками или домен, рекрутирующий прокаспазу в состав апоптосомы (прокаспазы 9 и 2). Их активация является следствием агрегации, возникающей вследствие взаимодействия с адаптерными белками (FADD, Apaf–1) и вызывающей аутокаталитическое отщепление длинного N–концевого участка. В процессе активации молекулы происходит реорганизация доменов и формирование активного гетеродимера (тетрамер p18/р11-р18/р11 в случае каспазы 8, тример - в случае каспазы 9). После активации инициаторных каспаз процесс апоптоза становится необратимым.

Инициаторные каспазы вызывают частичный протеолиз (отщепление короткого про–домена) и вследствие этого активацию исполнительных или эффекторных каспаз - 3, 6 и 7. Наиболее важной и универсальной по своему участию в осуществлении апоптоза является каспаза 3 . Активная каспаза 3 -это димер p17/р12. Исполнительные каспазы формируются также при действии гранзима В - сериновой протеазы, транспортируемой в клетки–мишени из киллерных лимфоцитов (Т и NK).

Мишенями исполнительных каспаз служат многочисленные белки, значительная часть которых локализуется в ядре . Расщепление молекул–мишеней определяет весь спектр проявлений апоптоза. Одна из главных мишеней каспазы 3 - эндонуклеаза CAD (Caspase–activated DNase) активируется в результате расщепления ингибиторного субкомпонента. Активированная CADосуществляет деградацию ДНК, действуя на доступные для нее участки молекулы, расположенные между нуклеосомами. Расщепление той же каспазой ядерных ферментов PARP(Poly-ADP-Ribose Polymerase), а также ДНК–зависимой протеинкиназы блокирует процесс репарации ДНК. Действие каспаз на фактор ретинобластомы (Rb) и d –изоформу протеинкиназы С определяет нарушение контроля клеточного цикла. Расщепление киназ МNK–1 и FAK приводит к изменениям, имеющим следствием ослабление адгезионной способности клетки, а расщепление гельсолина и киназы РАК определяет характерные изменения клеточной морфологии.

Уже упоминалось, что клетки, подвергающиеся апоптозу, быстро фагоцитируются. Этому способствует экспрессия на поверхности апоптотических клеток ряда молекул, распознаваемых фагоцитами и облегчающих процесс фагоцитоза . Так, при апоптозе нарушается асимметрия мембраны, и фосфатидилсерин, в норме локализующийся на внутренней поверхности мембраны, оказывается экспонированным на поверхности. Он распознаётся молекулой CD14 макрофага и, возможно, другими Рц. Свободные остатки Сахаров, формирующиеся вследствие десиалирования мембранных гликоконъюгатов, распознаются мембранными лектинами фагоцитов. Тромбоспондин, который также появляется на поверхности апоптотических клеток, узнается молекулами адгезии - интегрином a 2 b 2 и CD36, через которые сигналы передаются внутрь фагоцитирующей клетки и активируют её метаболизм. Лизосомальная ДНКаза II довершает деградацию ДНК апоптотической клетки уже внутри фагоцита. Благодаря быстрому фагоцитозу и отсутствию выхода внутриклеточного содержимого в межклеточное пространство, погибающая клетка не «загрязняет» его и не вовлекает в процесс гибели соседние клетки, что составляет важное отличие апоптоза от некроза.

В связи с интенсивным фагоцитозом апоптотических клеток их трудно определить in situ . Идентификация процесса апоптоза не ограничивается регистрацией морфологических изменений клеток (это - слишком субъективный показатель). Она основана на ряде особенностей процесса, о которых говорилось выше (рис. 52). Большая часть методов определения апоптоза основывается на выявлении деградации ДНК. Ещё недавно в качестве основного и самого надежного метода определения апоптоза клеток использовался электрофорез фрагментов ДНК, экстрагируемых из клетки: для апоптоза характерна «лесенка», то есть наличие фрагментов, по протяженности кратных длине ДНК в нуклеосоме, что при электрофорезе проявляется в виде дискретных фракций . Для выявления нерепарированных разрывов ДНК используют TUNEL–метод (TdT–mediated dUTR-biotin Nick End Labeling), основанный на катализируемом терминальной дезоксинуклеотидилтрансферазой (TdT) подсоединении к свободному 3"–концу нити ДНК меченых нуклеотидов с последующим обнаружением меченых клеток иммуногистохимическими или цитофлуорометрическими методами . В качестве скрининг–метода используют цитофлуорометрическое выявление гиподиплоидных клеток (т.е. клеток, потерявших часть ДНК вследствие её деградации), с помощью окрашивания пропидия йодидом . Ещё один широко распространённый цитофлуорометрический метод определения апоптоза используется для обнаружения экспрессии клетками фосфатидилсерина, который способен связывать аннексии V, меченный флуорохромом . Комбинирование окрашивания аннексином и пропидия йодидом позволяет дифференцировать апоптотические и некротические клетки (только последние окрашиваются пропидием без предварительной фиксации).

Рис . 52 . Методы определения апоптоза . а - схемы электрофореграмм олигонуклеотидов, иллюстрирующие различные проявления деградации ДНК при апоптозе (слева - «лесенка», отражающая последствия межнуклеосомной деградации ДНК с формированием дискретных фракций) и некрозе (справа - сплошное пятно, отражающее неупорядоченную деградацию ДНК), б - гистограмма, полученная при цитофлуорометрическом анализе фиксированных клеток, окрашенных на ДНК пропидия йодидом. Основной пик соответствует диплоидным клеткам, пик справа - клеткам, находящимся в клеточном цикле, пик слева, отмеченный курсором М1 - гиподиплоидным клеткам, утратившим часть ДНК в результате апоптоза - 28,7% от общего числа, в - результаты цитофлуорометрического анализа нефиксированных клеток, окрашенных конъюгатом аннексина V с изотиоцианатом флуоресцеина (по оси абсцисс) и пропидия йодидом (по оси ординат). Жизнеспособные клетки присутствуют в левом нижнем квадранте. В правом нижнем квадранте содержатся клетки, подвергшиеся апоптозу (связывают аннексии V, но непроницаемы для пропидия йодида), в левом верхнем квадранте - клетки, подвергшиеся некрозу (непроницаемы для пропидия йодида, не связывают аннексии V), в правом верхнем квадранте - как полагают, клетки, подвергшиеся апоптозу, который перешел в некроз.

Апоптоз – это программированная клеточная смерть (инициирующаяся под действием вне- или внутриклеточных факторов) в развитии которой активную роль принимают специальные и генетически запрограммированные внутриклеточные механизмы . Он, в отличие от некроза активный процесс, требующий определенных энергозатрат . Первоначально пытались разграничить понятия «программированная клеточная гибель » и «апоптоз »: к первому термину относили устранение клеток в эмбриогенезе, а ко второму – программированную смерть только зрелых дифференцированных клеток. В настоящее время выяснилось, что никакой целесообразности в этом нет (механизмы развития клеточной гибели одинаковы) и два понятия превратились в синонимы, хотя это объединение и не бесспорно.

Прежде чем приступить к изложению материала о роли апоптоза для жизнедеятельности клетки (и организма) в норме и патологии, мы рассмотрим механизм апоптоза. Их реализацию можно представить в виде поэтапного развития следующих стадий:

1 стадия стадия инициации (индукции) .

В зависимости от происхождения сигнала, стимулирующего апоптоз, различают:

    внутриклеточные стимулы апоптоза . Среди них к наиболее известным относят – разные виды облучения, избыток Н + , оксид азота, свободные радикалы кислорода и липидов, гипертермия и др. Все они могут вызывать различные повреждения хромосом (разрывы ДНК, нарушения ее конформации др.) и внутриклеточных мембран (особенно митохондрий). То есть в данном случае поводом для апоптоза служит «неудовлетворительное состояние самой клетки» (Мушкамбиров Н.П., Кузнецов С.Л., 2003). Причем, повреждение структур клеток должно быть достаточно сильным, но не разрушительным. У клетки должны сохраниться энергетические и материальные ресурсы для активации генов апоптоза и его эффекторных механизмов. Внутриклеточный путь стимуляции программированной смерти клетки можно обозначить как «апоптоз изнутри »;

    трансмембранные стимулы апоптоза , т.е., в этом случае он активируется внешней «сигнализацией», которая передается через мембранные или (реже) внутриклеточные рецепторы. Клетка может быть вполне жизнеспособной, но, с позиции целостного организма или «ошибочной» стимуляции апоптоза, она должна погибнуть. Этот вариант апоптоза получил название «апоптоз по команде ».

Трансмембранные стимулы подразделяются на:

    «отрицательные » сигналы. Для нормальной жизнедеятельности клетки, регуляции ее деления и размножения необходимо воздействие на нее через рецепторы различных БАВ: факторов роста, цитокинов, гормонов. Среди прочих эффектов, они подавляют механизмы клеточной гибели. И естественно, дефицит или отсутствие данных БАВ активирует механизмы программированной смерти клетки;

    «положительные » сигналы. Сигнальные молекулы, такие как ФНОα, глюкокортикоиды, некоторые антигены, адгезивные белки и др., после взаимодействия с клеточными рецепторами могут запускать программу апоптоза.

На клеточных мембранах находится группа рецепторов, в задачу которых передача сигнала к развитию апоптоза является основной, возможно даже единственной функцией. Это, например, белки группы DR (death receptos – «рецепторы смерти »): DR 3 , DR 4 , DR 5 . Наиболее хорошо изучен Fas-рецептор, появляющийся на поверхности клеток (гепатоцитах) спонтанно или под влиянием активации (зрелые лимфоциты). Fas-рецептор при взаимодействии с Fas-рецептором (лигандом) Т-киллера запускает программу смерти клетки мишени. Однако, взаимодействие Fas-рецептора с Fas-лигандом в областях, изолированных от иммунной системы, заканчивается гибелью самого Т-киллера (см. нижеигандом в областях, изолированных от иммунной системы, заканчивается гибелью самого Т-киллера ()ожно000000000000000000000000000).

Следует помнить, что некоторые сигнальные молекулы апоптоза, в зависимости от ситуации могут наоборот, блокировать развитие программированной смерти клеток. Амбивалентность (двойственное проявление противоположных качеств) характерна для ФНО, ИЛ-2, интерферона γ и др.

На мембранах эритроцитов, тромбоцитов, лейкоцитов, а так же клеток легкого и кожи обнаружены особые антигены-маркеры . На них синтезируются физиологические аутоантитела , и они, выполняя роль опсонинов , способствуют фагоцитозу этих клеток, т.е. гибель клеток происходит путемаутофагоцитоза . Выяснилось, что антигены-маркеры появляются на поверхности «старых» (прошедших свой путь онтогенетического развития) и поврежденных клетках, молодые и неповрежденные клетки их не имеют. Данные антигены получили название «антигены-маркеры стареющих и поврежденных клеток» или «белок третьей полосы». Появление белка третьей полосы контролируется геномом клетки. Следовательно, аутофагоцитоз можно рассматривать, как вариант запрограммированной гибели клеток .

    Смешанные сигналы. Это сочетанное воздействие сигналов первой и второй группы. Например, апоптоз происходит с лимфоцитами, активированных митогоном (положительный сигнал), но не вступивших в контакт с АГ (отрицательный сигнал).

2 стадия стадия программирования (контроля и интеграции механизмов апоптоза).

Для этой стадии характерно два, диаметрально противоположных процесса, наблюдающихся после инициации. Происходит либо:

    реализация пускового сигнала к апоптозу через активацию его программы (эффекторами являются каспазы и эндонуклеазы);

    блокируется эффект пускового сигнала апоптоза.

Различают два основных, но не исключающих друг друга, варианта исполнения стадии программирования (рис. 14):

Рис. 14. Каспазный каскад и его мишени

R– мембранный рецептор; К – каспазы;AIF– митохондриальная протеаза; Цит. С – цитохром с;Apaf-1 – цитоплазматический белок;IAPs– ингибиторы каспаз

1. Прямая передача сигнала (прямой путь активации эффекторных механизмов апоптоза минуя геном клетки) реализуется через:

    адапторные белки. Например, так осуществляется запуск апоптоза Т-киллером. Он активирует каспазу-8 (адапторный белок). Аналогично может действовать и ФНО;

    цитохром С и протеазу ΑIF (митохондриальная протеаза). Они выходят из поврежденной митохондрии и активируют каспазу-9;

    гранзимы. Т-киллеры синтезируют белок перфорин, который образует каналы в плазмолемме клетки-мишени. Через эти каналы в клетку проникают протеолитические ферменты гранзимы , выделяемые все тем же Т-киллером и они запускают каскад каспазной сети.

2. Опосредованная передача сигнала. Она реализуется с помощью генома клетки путем:

    репрессии генов, контролирующих синтез белков-ингибиторов апоптоза (гены Bcl-2, Bcl-XL и др). Белки Bcl-2 в нормальных клетках входят в состав мембраны митохондрий и закрывают каналы по которым из этих органоидов выходят цитохром С и протеаза AIF;

    экспрессии, активации генов, контролирующих синтез белков-активаторов апоптоза (гены Bax, Bad, Bak, Rb, P 53 и др.). Они, в свою очередь активируют каспазы (к-8, к-9).

На рис. 14 представлена примерная схема каспазного принципа активации каспаз. Видно, что откуда бы не запускался каскад, его узловым моментом является каспаза 3. Она активируется и каспазой 8 и 9. Всего в семействе каспаз – более 10 ферментов. Локализуются в цитоплазме клетки в неактивном состоянии (прокаспазы). Положение всех каспаз в данном каскаде до конца не выяснено, поэтому на схеме ряд из них отсутствует. Как только активируются каспазы 3,7,6 (возможно и их другие типы) наступает 3 стадия апоптоза.

3 стадия стадия реализация программы (исполнительная, эффекторная).

Непосредственными исполнителями («палачами» клетки) являются выше указанные каспазы и эндонуклеазы. Местом приложения их действия (протеолиза) служат (рис. 14):

    цитоплазматические белки – белки цитоскелета (фодрин и актин). Гидролизом фодрина объясняют изменение поверхности клетки – «гофрирование» плазмолеммы (появление на ней впячиваний и выступов);

    белки некоторых цитоплазматических регуляторных ферментов: фосфолипазы А 2 , протеинкиназы С и др.;

    ядерные белки. Протеолиз ядерных белков занимает основное место в развитии апоптоза. Разрушаются структурные белки, белки ферментов репликации и репарации (ДНК-протеинкиназы и др.), регуляторные белки (рRb и др.), белки-ингибиторов эндонуклеаз.

Иннактивация последней группы – белков ингибиторов эндонуклеаз приводит к активации эндонуклеаз, второму « орудию » апоптоза . В настоящее время эндонуклеазы и в частности, Са 2+ , Мg 2+ -зависимая эндонуклеаза , рассматривается как центральный фермент программируемой смерти клетки. Она расщепляет ДНК не в случайных местах, а только в линкерных участках (соединительные участки между нуклеосомами). Поэтому хроматин не лизируется, а только фрагментируется, что определяет отличительную, структурную черту апоптоза.

Вследствие разрушения белка и хроматина в клетке формируются и от нее отпочковываются различные фрагменты – апоптозные тельца. В них находятся остатки цитоплазмы, органелл, хроматина и др.

4 стадия стадия удаления апоптозных телец (фрагментов клетки).

На поверхности апоптозных телец экспрессируются лиганды, они распознаются рецепторами фагоцитов. Процесс обнаружения, поглощения и метаболизирования фрагментов погибшей клетки происходит сравнительно быстро. Это способствует избежать попадания содержания погибшей клетки в окружающую среду и тем самым, как отмечено выше, воспалительный процесс не развивается. Клетка уходит из жизни «спокойно», не беспокоя «соседей» («тихий суицид»).

Программированная клеточная гибель имеет важное значение для многих физиологических процессов . С апоптозом связаны:

    поддержание нормальных процессов морфогенеза – запрограммированная смерть клеток в процессе эмбриогенеза (имплантации, органогенеза) и метаморфоза;

    поддержание клеточного гомеостаза (в том числе ликвидация клеток с генетическими нарушениями и инфицированных вирусами). Апоптозом объясняется физиологическая инволюция и уравновешивание митозов в зрелых тканях и органах. Например, гибель клеток в активно пролиферирующих и самообновляющихся популяциях – эпителиоцитов кишечника, зрелых лейкоцитов, эритроцитов. Гормонально-зависимая инволюция – гибель эндометрия в конце менструального цикла;

    селекция разновидностей клеток внутри популяции. Например, формирование антигенспецифической составляющей иммунной системы и управление реализацией ее эффекторных механизмов. С помощью апоптоза происходит выбраковка ненужных и опасных для организма клонов лимфоцитов (аутоагрессивных). Сравнительно недавно (Griffith T.S., 1997) показали значение программированной гибели клеток в защите «иммунологически привилегированных» зон (внутренние среды глаза и семенников). При прохождении гисто-гематических барьеров данных зон (что случается редко), эффекторные Т-лимфоциты гибнут (см. выше). Включение механизмов их смерти обеспечивается при взаимодействии Fas-лиганда барьерных клеток с Fas-рецепторами Т-лимфоцита, тем самым предотвращается развитие аутоагрессии.

Роль апоптоза в патологии и виды различных заболеваний связанных с нарушением апоптоза представлены в виде схемы (рис. 15) и таблицы 1.

Конечно, значение апоптоза в патологии меньше чем некроза (возможно, это связано с недостаточностью таких знаний). Однако, проблема его в патологии имеет и несколько иной характер: она оценивается по степени выраженности апоптоза — усиление или ослабление при тех или иных болезнях.

Факторы, которые индуцируют апоптоз. Апоптоз контролируется системой соответствующих сигналов от внутренних (эндогенных) и внешних (экзогенных) факторов, которые воспринимаются через так называемые

рецепторы «смерти». Сигналы, которые могут приводить к развитию апоптоза, называют апоптогеннимы, или проапоптичнимы, стимулами.

Важнейшими эндогенными стимулами, запускающие апоптоз, является неправильный ход клеточного цикла, наличие вирусного поражения, наличие в клетке фрагментов поврежденной ДНК, «излишек» митогеном факторов.

Экзогенные стимулы, приводящие к апоптозу, представляют собой различные сигналы, поступающие к рецепторам клеток, например сигнал от рецепторов ФНО-семьи (Fas-, ФНО-рецептора и т.п.). Одним из важных механизмов контроля за ростом клеточных популяций зависимость клеток от сигналов, поступающих из клеточного микроокружения. Клетки, которые не получают этих сигналов, например в случае, если они попали в другой микроокружения, погибают щлях апоптоза. Поэтому к апоптозу могут приводить определенные митогенного стимулы, если они действуют в избыточном количестве или клетка не готова к их восприятию. С другой стороны, отсутствие нужных ростовых факторов также приводит к апоптотической гибели активированной клетки. Среди внешних факторов, которые могут приводить к апоптозу, следует также назвать ряд повреждающих воздействий, таких как токсины, радиация, УФ-облучение, воздействие сублетальных температур, механические повреждения. В случае сильно выраженного влияния эти факторы вызывают некроз тканей, при слабом - апоптоз отдельных клеток. Рецепторы «смерти» и их лиганды. Рецепторы «смерти», взаимодействие которых с соответствующими лигандами приводит к запуску апоптоза, являются членами суперродины рецепторов фактора некроза опухолей ФНПР. Важнейшим и поэтому хорошо изученным рецептором «смерти» является Fas (CD95/APO-1). К рецепторам семьи ФНО-Р кроме Fas относятся собственно рецепторы к фактору зу опухолей ФНО-Р1 и ФНО-Р2, а также многие другие молекул: CD30, CD40, фактор к фактору роста нервов ФРГ-Р т.д.. Рецепторы «смерти» характеризуются наличием 60 - 80-го аминокислотного цитоплазматического домена, который называют доменом «смерти» (DD - от англ. Death domein). Для эффективного инициирования сигнала «смерти» от мембраны клетки нужна тримеризация рецепторов, что и происходит при связывании рецепторов с соответствующими лигандами или агонистического антителами. После связывания рецептора домены «смерти» ассоциируются с определенными адапторной молекулами и таким образом инициируется сигнал к запуску программы апоптоза.

Оказалось, что к физиологическим лигандом к рецептору Fas является белок Fas-лиганд (FasL), который экспрессируется на поверхности клеток с цитотоксической функцией. Некоторые клетки могут экспрессировать как рецептор Fas, так и Fas-лиганд и таким образом самоуничтожаться.

Мембранная форма белка Fas представлена почти на всех клетках организма, которые способны к делению. Это позволяет клеткам иммунной системы индуцировать в случае необходимости апоптоз в своих «мишеней». Особенно плотно молекула Fas экспрессированных на клетках в кишечнике, тимусе, печени, легких и т.д.. Основное назначение мембранного Fas - это запуск программы апоптоза с клеточной поверхности. Однако в последнее время появились данные о некоторые другие функции Fas. В частности, было показано, что связывание Fas на мембране полиморфноядерных нейтрофилов приводит к хемотаксиса этих клеток. Более того, в некоторых случаях Fas может выступать как рецептор к ростовых факторов. Гликопротеин Fas может существовать как в ассоциированной с мембраной (mFas), так и в растворимой (sFas) формах. Растворимый форма Fas образуется путем альтернативного сплайсинга и может существовать в виде нескольких изоформ. Растворимый форма рецептора взаимодействует с Fas-лигандом на поверхности цитотоксических клеток и таким образом нейтрализует последние. Считают, что в некоторых случаях с помощью секреции растворимой формы Fas-рецептора опухолевые клетки избегают иммунного контроля.

Физиологический лиганд к рецептору Fas (FasL, CD95L) является трансмембранным белком с молекулярной массой 40 кДа, который экспрессируется в виде тройного. FasL является членом семьи цитокинов, включая фактор некроза опухолей а (ФНО-а), лимфотоксины а и ß, CD30L, CD40L и многие другие. FasL экспрессируется на активированных цитотоксических Т-лимфоцитах и естественных киллеров, а также на клетках кишечника, глаза, легких, почек, нервной ткани, плаценты. FasL по Fas, может существовать в связанной с мембраной и растворимой форме (sFasL и mFasL). Показано, что растворимый FasL имеет молекулярную массу 27 кД, существует в виде тройного, образующийся из мембранной формы в результате отщепления трансмембранного части определенной протеиназой. Растворимый форма FasL биологически активная, то есть способна индуцировать апоптоз в чувствительных клетках, экспрессирующих рецептор Fas. Реализация апоптоза. Главным «участником» процесса апоптоза является семье 14 цистеиновых протеиназ, которые расщепляют белки по пептидными связями после аспарагиновой кислоты и которые называют каспаза

Каспазы гомологичные между собой аминокислотными последовательностями и структурой. Они экспрессируются как проферменте и содержат следующие структурные элементы: N-концевой вариабельный домен, большую (20 кД) и малую (l0 кД) субъединицы. Активация каспаз происходит вследствие протеолитического расщепления связи между доменами и ассоциации большой и малой субъединиц с образованием гетеродимеру. Гетеродимеры, в свою очередь, ассоциируются и образуют тетрамер с двумя каталитическими центрами, работающими независимо.

Апоптичнои сигнал с поверхности клетки приводит активацию инициаторных каспаз, которые расщепляют и активируют эффекторные каспазы. Последние, в свою очередь, расщепляют внутриклеточные белки, что и приводит к развитию апоптоза. К инициаторных каспаз относят каспазы 8, 9, 10, а к эффекторных - 2, 3, 6, 7. Активация инициаторных каспаз требует связывания со специфическими кофакторами и адапторной молекулами.Наприклад, активация прокаспаз 8 и 10 происходит после их ассоциации с доменом DED (death effector domain) молекулы FADD (Fas-associated death domain). Прокаспаза 9 активируется через образование комплекса с адапторной молекулой APAF-1, цитохромом с и дАТФ. Эффекторные каспазы расщепляют различные внутриклеточные мишени: структурные белки, сигнальные белки, регуляторы транскрипции, белки, регулирующие метаболизм ДНК, гистоны и другие белки с

различными функциями. Среди гистонов чувствителен к действия эффекторных каспаз является гистона Н1. Расщепления этого гистона делает определенные участки ДНК доступными для действия эндонуклеаз. Каспаз также расщепляют ингибитор каспазоактивованои ДНКазы, что вызывает активацию этого фермента и расщепление ДНК на олигонуклеосомни фрагменты. Существует много путей индуцирования апоптоза, которые можно сгруппировать в три категории: от рецепторов, от митохондрий и от ядра. Первый путь активации апоптоза начинается после перекрестного связывания рецепторов ФНО-семьи (рецепторов «смерти») соответствующими лигандами. Такие рецепторы тримеризуються, вследствие чего на них появляются сайты связывания для адапторной белков семьи FADD (рис. 78).

С эффекторными доменами «смерти» DED молекулы F ADD напрямую ассоциируется прокаспаза 8. Олигомеризация прокаспаз 8 приводит к тому, что они расщепляют друг друга и таким образом самоактиву дерутся.

Каспаза 8 активирует другие каспазы - 3, 4, 6, 7 и 13. Каспаза 3, в свою очередь, активирует каспазы 6 и 9. Каспазы 3 и 6 принимают непосредственное участие в ядерном апоптозе. Предполагают, что каспаза 4 активирует митохондрии, что приводит к выходу из них в цитоплазму цитохрома с. Второй путь активации апоптоза связан с нарушением функций мембран митохондрий, в результате чего цитохром с может выходить в цитозоль и вместе с другими факторами активировать прокаспазы. Цитохром с связывается с адапторной молекулой APAF-1. При наличии дезоксиаденозинтрифосфату (дАТФ) происходит взаимодействие комплекса с каспазы 9 и активация последней. Ингибирование апоптоза на этом уровне может происходить при участии белка Все-Xl, который присоединяется к комплексу APAF-1 и каспазы 9 и блокирует его. Некоторые протеинкиназы, например протеинкиназа В (Akt), могут тормозить развитие апоптоза путем фосфорилирования определенных каспаз.

Выход цитохрома с с митохондnий контролируют некоторые белки семьи Все, встроенные в мембрану митохондрий (будут рассмотрены далее).

Третий путь активации апоптоза связан с экспрессией определенных проапоптичних генов. Главным транскрипционных факторов, определяющим экспрессию этих генов, является белок р53 - продукт гена р53 супрессора опухолей. Активация р53 пов2язана с различными метаболическими нарушениями в цитоплазме клетки, повышением уровня ионов Са +, появлением коротких фрагментов ДНК и т.д.. Активация р53 наблюдается также в случае нарушений клеточного цикла. Под действием р53 увеличивается экспрессия более 20 генов, в том числе белка Вах, рецептора Fas и др.. Итак, путь запуска апоптоза от ядра тесно связан с другими путями его индуцирования.

Кроме рассмотренных путей активации апоптоза существует еще путь непосредственной активации прокаспаз в цитозоле с помощью других протеолитических ферментов - гранзимив и гранулизину, которые доставляет в клетку-мишень активирован ЦТЛ или натуральный киллер. Этот путь подробно рассмотрен в разд. 11.

Противоречивые данные получены о том, что в некоторых типах клеток апоптоз может происходить без участия инициаторных или эффекторных каспаз. Такой тип гибели клеток называют каспазонезалежним (caspase independent form of cell death).

По способности проводить апоптичнои сигнал клетки можно разделить на два типа. Апоптоз в клетках первого типа происходит независимо от митохондрий и не блокируется гиперэкспрессией белка все-2. Апоптоз в клетках второго типа зависит от активации митохондрий. Гиперэкспрессия белков все-2 и Все-Xl в таких клетках полностью блокирует развитие апоптоза. Т-клетки относятся к клеткам первого типа, а В-лимфоциты - в клетки второго типа.

Существуют два хорошо охарактеризованных пути апоптоза: с участием рецепторов клеточной гибели (внешний путь) и с участием митохондрий (собственный путь)

Активация каспаз и апоптоз индуцируются связыванием специфических лигандов из группы TNF со своими рецепторами (рецепторы клеточной гибели)

У позвоночных активация каспаз происходит при различных путях . На рисунке ниже представлены два хорошо известных пути. Это путь с участием рецепторов клеточной гибели (который также называется внешний путь) и путь с участием митохондрий (собственный путь). Хотя между обоими путями имеется несколько существенных различий, они обладают чертой сходства, котороая заключается в том, что каждый включает этап активации инициирующей каспазы по механизму индуцированного сближения с последующей активацией эффекторных каспаз.

Вместе с тем, наблюдается некоторый перекрест между двумя механизмами , поскольку путь с участием рецепторов клеточной гибели может включать элементы митохондриального пути.

Представляют собой подгруппу относящихся к семейству рецепторов фактора некроза опухоли (TNFR) позвоночных. Они включают TNFR1, Fas (также называемый CD95 или АРО-1) и TRAIL (TRAIL-R1, -R2 у человека, также называемые DR4 и DR5). На рисунке ниже представлены различные типы рецепторов клеточной гибели.

Эти тримерные рецепторы связываются со специфическими лигандами (TNF, Fas-лигандом или TRAIL соответственно) и могут быстро запускать в клетках процесс апоптоза. Лиганды продуцируются различными клетками, включая клетки иммунной системы, часто в ответ на факторы, вызывающие воспаление.

Рецепторы гибели клеток содержат домен смерти, расположенный внутри клетки. Эти домены, как и домены CARD, DED и PYR, представляют собой еще один пример складок смерти, и они взаимодействуют с доменами смерти в адаптерных молекулах.

Находятся на поверхности клеток в виде тримеров, и, вероятно, соответствующие лиганды располагаются в виде кластеров, которые связаны с двумя и более этих тримеров. Такое расположение делает рецепторы доступными для взаимодействия с внутриклеточными белками. После связывания между собой доменов гибели Fas/CD95 и рецепторов TRAIL, они ассоциируют с адаптерным белком FADD (Fas-associated death domain). Эта ассоциация возникает при участии домена гибели FADD белка.

При этом в клетке молекулы FADD сближаются, и становится доступным другой регион белка, содержащий DED.

Домен DED белка FADD теперь связывается с DED-участками продомена мономера каспазы-8, что приводит к образованию димеров и активации инициаторной каспазы по механизму индуцированного сближения. После связывания рецептора гибели быстро образуется комплекс, содержащий FADD (за счет взаимодействия с доменом гибели). FADD связан с каспазой-8 (за счет взаимодействия с DED). Это сигнальный комплекс, индуцирующий клеточную гибель (англ, death-inducing signaling complex, DISC).

Активированная каспаза-8 начинает расщеплять в клетке субстраты, включая эффекторные каспазы-3 и -7, и происходит апоптоз. На рисунке ниже представлена последовательность событий при развитии апоптоза с участием рецепторов клеточной гибели.

Известно много примеров апоптоза , происходящего с участием рецепторов клеточной гибели. Этот путь особенно характерен для функционирования эффекторов иммунной системы и для регуляции иммунных процессов. Внешний путь апоптоза также реализуется в клетках другого происхождения, включая нейроны. В настоящее время в качестве возможного противоопухолевого средства исследуется TRAIL, который обладает способностью индуцировать апоптоз в клетках некоторых опухолей.

В соответствии с установленной ролью Fas в иммунной системе у людей, а также у мышей, несущих мутации, затрагивающие Fas или его лиганд, наблюдается заболевание, при котором происходит массивное разрастание лимфатических органов. Это разрастание обусловлено накоплением измененной популяции Т-клеток. У больных также отмечаются аномалии В-лимфоцитов, включающие продуцирование аутоиммунных антител и развитие В-клеточных лимфом.

Представлены два пути реализации апоптоза у позвоночных.
Путь через рецепторы клеточной гибели (также носящий название внешний путь) запускается, когда специфические лиганды гибели, относящиеся к семейству TNF, находят свои рецепторы.
Митохондриальный путь (также называемый внутренним, или собственным, путем)
реализуется при нарушении проницаемости наружной мембраны митохондрий в результате взаимодействий белков семейства Bcl-2 и высвобождения межмембранных белков.
К числу последних относится цитохром С, который при взаимодействии с белками цитозоля запускает активацию каспаз.
Эти процессы подробно рассмотрены в последующих статьях на сайте.

Рецепторы клеточной гибели относятся к семейству TNF-рецепторов,
у которых со стороны клетки расположены домены клеточной гибели.
На поверхности многих типов клеток позвоночных эти рецепторы существуют в виде тримеров.
При связывании лиганда с рецептором клеточной гибели на поверхности клетки, адаптерный белок FADD присоединяется к нему с клеточной стороны.
Это происходит при взаимодействии доменов клеточной гибели (DD)-(DD).
Затем при участии эффекторных доменов клеточной гибели (DED)-(DED) к белку FADD присоединяется каспаза-8.
При димеризации каспазы-8 фермент активируется по механизму индуцированной близости.
Активная каспаза расщепляет и активирует эффекторные каспазы, которые вызывают апоптоз.
Комплекс, содержащий рецептор клеточной гибели, FADD и каспазу-8, называется сигнальным комплексом индукции клеточной гибели (DISC).
Статьи по теме