Онкология фиш тест чувствительный ген. FISH – исследование для дифференциальной диагностики. Как проводится FISH-тест

Современный метод цитогенетического анализа, позволяющий определять качественные и количественные изменения хромосом (в том числе транслокации и микроделеции) и используемый для дифференциальной диагностики злокачественных заболеваний крови и солидных опухолей.

Синонимы русские

Флуоресцентная гибридизация in situ

FISH-анализ

Синонимы английские

Fluorescence in-situ hybridization

Метод исследования

Флуоресцентная гибридизация in situ.

Какой биоматериал можно использовать для исследования?

Образец ткани, образец ткани в парафиновом блоке.

Как правильно подготовиться к исследованию?

Подготовки не требуется.

Общая информация об исследовании

Флуоресцентная гибридизация in situ (FISH, от англ. fluorescence in - situ hybridization) – это один из самых современных методов диагностики хромосомных аномалий. Он основан на использовании ДНК-проб, меченных флуоресцентной меткой. ДНК-пробы представляют собой специально синтезированные фрагменты ДНК, последовательность которых комплементарна последовательности ДНК исследуемых аберрантных хромосом. Таким образом, ДНК-пробы различаются по составу: для определения разных хромосомных аномалий используются разные, специфические ДНК-пробы. ДНК-пробы также различаются по размеру: одни могут быть направлены к целой хромосоме, другие – к конкретному локусу.

В ходе процесса гибридизации при наличии в исследуемом образце аберрантных хромосом происходит их связывание с ДНК-пробой, которое при исследовании с помощью флуоресцентного микроскопа определяется как флуоресцентный сигнал (положительный результат FISH-теста). При отсутствии аберрантных хромосом несвязанные ДНК-пробы в ходе реакции "отмываются", что при исследовании с помощью флуоресцентного микроскопа определяется как отсутствие флуоресцентного сигнала (отрицательный результат FISH-теста). Метод позволяет оценить не только наличие флуоресцентного сигнала, но и его интенсивность и локализацию. Таким образом, FISH-тест – это не только качественный, но и количественный метод.

FISH-тест обладает рядом преимуществ по сравнению с другими методами цитогенетики. В первую очередь, исследование FISH может быть применено как к метафазным, так и к интерфазным ядрам, то есть к неделящимся клеткам. Это основное преимущество FISH по сравнению с классическими способами кариотипирования (например, окрашиванием хромосом по Романовскому-Гимзе), которые применяются только к метафазным ядрам. Благодаря этому исследование FISH является более точным методом для определения хромосомных аномалий в тканях с низкой пролиферативной активностью, в том числе в солидных опухолях.

Так как в FISH-тесте используется стабильная ДНК интерфазных ядер, для исследования могут быть использованы самые различные биоматериалы – аспираты тонкоугольной аспирационной биопсии, мазки, аспираты костного мозга, биоптаты и, что немаловажно, сохраненные фрагменты ткани, например гистологические блоки. Так, например, FISH-тест может быть с успехом выполнен на повторных препаратах, полученных из гистологического блока биоптата молочной железы при подтверждении диагноза "аденокарцинома молочной железы" и необходимости определения HER2/neu-статуса опухоли. Следует особо подчеркнуть, что в данный момент исследование FISH рекомендовано в качестве подтверждающего теста при получении неопределенного результата иммуногистохимического исследования опухоли на онкомаркер HER2/neu(ИГХ 2+).

Другим преимуществом FISH является его способность определять микроделеции, которые не выявляются с помощью классического кариотипирования или ПЦР. Это имеет особое значение при подозрении на синдром Ди Джорджи и велокардиофациальный синдром.

FISH-тест широко используется в дифференциальной диагностике злокачественных заболеваний, в первую очередь в онкогематологии. Хромосомные аномалии в сочетании с клинической картиной и данными иммуногистохимического исследования являются основой классификации, определения тактики лечения и прогноза лимфо- и миелопролиферативнх заболеваний. Классическими примерами являются хронический миелолейкоз – t (9;22), острый промиелоцитарный лейкоз – t (15;17), хронический лимфолейкоз – трисомия 12 и другие. Что касается солидных опухолей, наиболее часто FISH-исследование применяется при диагностике рака молочной железы, мочевого пузыря, толстой кишки, нейробластомы, ретинобластомы и других.

Исследование FISH также может быть использовано в пренатальной и преимплантационной диагностике.

FISH-тест часто проводят в сочетании с другими методами молекулярной и цитогенетической диагностики. Результат этого исследования оценивают в комплексе с результатами дополнительных лабораторных и инструментальных данных.

Для чего используется исследование?

  • Для дифференциальной диагностики злокачественных заболеваний (крови и солидных органов).

Когда назначается исследование?

  • При подозрении на наличие злокачественного заболевания крови или солидных опухолей, тактика лечения и прогноз которых зависит от хромосомного состава опухолевого клона.

Что означают результаты?

Положительный результат:

  • Наличие в исследуемом образце аберрантных хромосом.

Отрицательный результат:

  • Отсутствие в исследуемом образце аберрантных хромосом.

Что может влиять на результат?

  • Количество аберрантных хромосом.

  • Иммуногистохимическое исследование клинического материала (с использованием 1 антитела)
  • Иммуногистохимическое исследование клинического материала (с использованием 4 и более антител)
  • Определение HER2 статуса опухоли методом FISH
  • Определение HER2 статуса опухоли методом СISH

Кто назначает исследование?

Онколог, педиатр, акушер-гинеколог, врач-генетик.

Литература

  • Wan TS, Ma ES. Molecular cytogenetics: an indispensable tool for cancer diagnosis. Anticancer Res. 2005 Jul-Aug;25(4):2979-83.
  • Kolialexi A, Tsangaris GT, Kitsiou S, Kanavakis E, Mavrou A. Impact of cytogenetic and molecular cytogenetic studies on hematologic malignancies. Chang Gung Med J. 2012 Mar-Apr;35(2):96-110.
  • Mühlmann M. Molecular cytogenetics in metaphase and interphase cells for cancer and genetic research, diagnosis and prognosis. Application in tissue sections and cell suspensions. Genet Mol Res. 2002 Jun 30;1(2):117-27.

Метод FISH-окраски (fluorescent in situ hybridization) разработан в Ливерморской национальной лаборатории (США) в 1986 г. Это принципиально новый метод изучения хромосом – метод флюоросцентного выявления ДНК путем гибридизации in situ со специфическими молекулярными зондами. Метод основан на способности хромосомной ДНК связываться при определенных условиях с фрагментами ДНК (ДНК-зондами), которые включают нуклеотидные последовательности комплементарные хромосомной ДНК. ДНК-зонды предварительно метят специальными веществами (например, биотином или дигоксигенином). Меченные ДНК-зонды наносят на цитогенетические препараты подготовленных для гибридизации метафазных хромосом. После того как произошла гибридизация, препараты обрабатывают специальными флюросцентными красителями, конъюгированными с веществами, способными избирательно присоединяться к биотину или дигоксигенину. Каждая хромосома имеет специфическую окраску. Гибридизация может проводиться также с зондами меченными радиоактивной меткой. Цитогенетический анализ проводится под люминесцентным микроскопом в ультрафиолетовом свете.

FISH-метод используется для выявление мелких делеций и транслокаций. Хромосомные обмены (транслокации и дицентрики) между разноокрашенными хромосомами легко определяются как разноцветные структуры.

Конец работы -

Эта тема принадлежит разделу:

Учебный модуль. Биология клетки

Высшего профессионального образования.. башкирский государственный медицинский университет.. министерства здравоохранения и социального развития..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Учебный модуль. Основы общей и медицинской генетики
(методические указания для студентов) Учебная дисциплина Биология Для направления подготовки Лечебное дело Ко

Правила оформления лабораторной работы
Необходимым элементом микроскопического изучения объекта является его зарисовка в альбом. Цель зарисовки - лучше понять и закрепить в памяти строение объекта, форму отдельных структ

Практическая работа
1. Приготовление временного препарата «Клетки пленки лука» Для того, чтобы приготовить временный препарат с пленкой лука, снимите

Структура цитоплазматических мембран. Транспортная функция мембран
2. Учебные цели: Знать: - строение универсальной биологической мембраны - закономерности пассивного транспорта веществ через мембраны

Строение эукариотических клеток. Цитоплазма и ее компоненты
2. Учебные цели: Знать: - особенности организации эукариотических клеток - строение и функцию органоидов цитоплазмы

Органоиды, участвующие в синтезе веществ
В любой клетке совершается синтез свойственных ей веществ, являющихся либо строительным материалом для новообразующихся структур взамен изношенных, либо ферментами, участвующими в биохимических реа

Органоиды с защитной и пищеварительной функцией
Лизосомы Эти органоиды известны с 50-х годов XX столетия, когда бельгийский биохимик де Дюв обнаружил в клетках печени мелкие гранулы, содержащие гидролитические

Органоиды, участвующие в энергообеспечении клетки
Подавляющее большинство функций клетки сопряжено с затратой энергии. Живая клетка образует ее в результате постоянно протекающих окислительно-восстановительных процессов, составляющ

Органоиды, участвующие в делении и движении клеток
К ним относятся клеточный центр и его производные - реснички и жгутики. Клеточный центр Клеточный центр имеется в животных клетках и у неко

Практическая работа №1
1. Микроскопический анализ постоянного препарата «Комплекс Гольджи в клетках спинального ганглия» На препарате нервные клетки им

Рибосомы
Выявляются при помощи электронной микроскопии в клетках всех организмов про- и эукариотов, их размер 8-35 нм, они прилегают к внешней мембране эндоплазматической сети. На рибосомах осуществляется с

Гранулярная эндоплазматическая сеть
Рассмотреть субмикроскопическое строение шероховатой эндоплазматической сети на электронной микрофотографии. Выявляются три участка ацинарных клеток поджелудочной железы голодающей летучей мыши. До

Цитоплазматические микротрубочки
Цитоплазматические трубочки обнаружены в клетках всех животных и растительных организмов. Это цилиндрические, нитевидные образования длиной 20-30 мкм, диаметром 1

Митотическая активность в тканях и клетках
В настоящее время изучены митотические циклы и режим митотической активности многих тканей животных и растений. Оказалось, что каждой ткани присущ определенный уровень митотической актив­ности. О м

Митоз (непрямое деление) в клетках корешка лука
При малом увеличении микроскопа найти зону размножения кончика лука, поставить в центр поля зрения участок с хорошо заметными активно делящимися клетками. Затем настроить препарат на большое увелич

Амитоз (прямое деление) в клетках печени мыши
Рассмотреть клетки печени мыши при большом увеличении микроскопа. На препарате клетки имеют многогранную форму. В неделящихся клетках ядро округлое с ядрышком. В делящихся клетках, приступивших к д

Синкарион яйцеклетки аскариды
При малом увеличении микроскопа найдите срез матки аскариды, заполненной фолликулами с яйцеклетками. Рассмотрите препарат при большом увеличении. Цитоплазма в яйцеклетках сжимается и отслаивается о

Структура и функции ДНК и РНК. Строение генов и регуляция экспрессии генов про- и эукариот. Этапы биосинтеза белка
2. Учебные цели: Знать: - химический состав и особенности организации нуклеиновых кислот; - различия между ДНК и РНК;

Закономерности наследования признаков при моногибридном скрещивании. Виды взаимодействия аллельных генов
2. Учебные цели: Знать: - закономерности моногибридного скрещивания; - I и II законы Менделя; - виды взаимодейс

Закон независимого наследования признаков. Виды взаимодействия неаллельных генов
2. Учебные цели: Знать: - закономерности ди- и полигибридного скрещивания; - III закон Менделя; - виды взаимоде

Изменчивость как свойство живого, ее формы. Фенотипическая (модификационная или ненаследственная) изменчивость. Генотипическая изменчивость
2. Учебные цели: Знать: - основные формы изменчивости; - получить представления о пенетрантности и экспрессивности призн

Самостоятельная работа студентов под контролем преподавателя
Практическая работа Определение степени вариабельности признака и коэффициента вариации в зависимости от условий окружающей среды.

Анализ родословных
Не все методы генетики применимы к анализу наследования тех или иных признаков у человека. Однако по исследованию фенотипов нескольких поколений родственников можно установить характер наследования

Близнецовый метод исследования генетики человека
Близнецовый метод позволяет оценить относительную роль генетических и средовых факторов в развитии конкретного признака или заболевания. Близнецы бывают монозиготные (однояйцевые) и дизиготные (раз

Дерматоглифический метод исследования генетики человека
Дерматоглифический анализ - это изучение папиллярных узоров пальцев, ладоней и стоп. На этих участках кожи имеются крупные дермальные сосочки, а покрывающий их эпидермис образует г

Цитогенетический метод в исследовании генетики человека
Среди многих методов изучения наследственной патологии человека цитогенетический метод занимает существенное место. С помощью цитогенетического метода возможен анализ материальных основ наследствен

Изучение хромосомного набора
Может проводиться двумя способами: 1) прямым методом - исследование метафазных хромосом в делящихся клетках, например, костного мозга (ис

Практическая работа
1. Просмотр демонстрационного препарата «Кариотип человека» в цитогенетической лаборатории При увеличении Х90 в поле зрения видны лейкоциты

Анализ кариотипа у больных с хромосомными болезнями (по фотографиям)
№ 1. трисомия по 13 хромосоме (синдром Патау). Кариотип 47, +13. № 2. трисомия по 18 хромосоме (синдром Эдвардса). Кариотип 47, +18. № 3. трисомия по 21 хромосоме (болезнь Дауна).

Проведение дактилоскопического анализа
Для изготовления собственных отпечатков пальцев необходимо следующее оборудование: фотографический каток, стекло площадью 20х20 см2, кусок поролона, типографская краска (или аналогичный

Цитогенетический анализ кариотипа (по микрофотографиям метафазных пластинок)
1. Зарисовать метафазную пластинку. 2. Подсчитать общее количество хромосом. 3. Идентифицировать хромосомы групп A (3 пары крупных метацентрических хромосом), В (две пары крупных

Экспресс-метод исследования Х-полового хроматина в ядрах эпителия слизистой оболочки полости рта
Перед взятием соскоба пациента просят обкусать зубами слизистую оболочку щеки и внутреннюю поверхность щеки протереть марлевой салфеткой. Эта процедура необходима для удаления разрушенных клеток, г

Популяционно-статистический метод
Популяция – это совокупность особей одного вида, длительно населяющих одну территорию, относительно изолированных от других групп особей данного вида, свободно скрещивающихся между собой и дающих п

Биохимический метод
Биохимические методы основаны на изучении активности ферментных систем (либо по активности самого фермента, либо по количеству конечных продуктов реакции, катализируемой этим ферментом). Биохимичес

Молекулярно-генетический метод
В основе всех молекулярно-генетических методов лежит изучение структуры ДНК. Этапы анализа ДНК: 1. Выделение ДНК из клеток, содержащих ядра (крови

Полимеразная цепная реакция синтеза ДНК
Полимеразная цепная реакция (ПЦР) - метод амплификации (размножения) ДНК in vitro, с помощью которого в течение нескольких часов можно выявить и размножить интересующий фрагмент ДНК размером от 80


№ п/п ФИО Генотип Иванов АА Петров Аа

Наблюдаемые частоты генотипов и аллелей
Генотипы, аллели Число случаев Частота (в долях) АА 1 / 5 = 0,2 Аа

Наблюдаемые и ожидаемые частоты генотипов и аллелей
Наблюдаемое число случаев Наблюдаемая частота Ожидаемая частота АА (p2)

Наблюдаемые частоты генотипов и аллелей
№ п/п Умение сворачивать язык в трубочку Генотипы Умею (да) А_

Техника FISH — Fluorescent in situ hybridization, разработана в середине 1980-х годов и используется для детекции присутствия или отсутствия специфических ДНК-последовательностей на хромосомах, а также альфа-сателлита ДНК, локализованного на центромере хромосомы 6, CEP6(6р11.1-q11.1).

Это дало существенный сдвиг в диагностике онкологических заболеваний меланоцитарного генеза произошел в связи с обнаружением опухолевых антигенов. На фоне злокачественной определяется мутация в трех антигенах: CDK2NA (9p21), CDK4 (12q14) и CMM1(1p). В связи с этим возможность объективной дифференциальной диагностики, основанной на определении генетических характеристик меланоцитарных опухолей кожи, имеет большое значение в ранней диагностике меланомы и ее предшественников.В ядре с нормальным набором исследуемых генов и хромосомы 6 наблюдается два гена RREB1, окрашенных красным, два гена MYB, окрашенных желтым, два гена CCND1, выделенных зеленым цветом, и две центромеры хромосомы 6, обозначенные голубым цветом. С диагностической целью используются флуоресцентные пробы.

Оценка результатов реакции: проводится подсчет количества красного, желтого, зеленого и голубого сигналов в 30 ядрах каждого образца, выявляются четыре параметра различных вариантов генетических нарушений, при которых образец генетически соответствует меланоме. Например, образец соответствует меланоме, если среднее количество гена CCND1 на ядро ≥2,5. По этому же принципу производится оценка копийности других генов. Препарат считается FISH-положительным, если выполняется хотя бы одно из четырех условий. Образцы, в которых все четыре параметра ниже пограничных значений, расцениваются как FISH-отрицательные.

Определение специфических ДНК-последовательностей на хромосомах проводят на срезах биоптатов или операционного материала. В практическом исполнении FISH-реакция выглядит следующим образом: исследуемый материал, содержащий ДНК в ядрах меланоцитов, подвергается обработке для частичного разрушения ее молекулы с целью разрыва двухцепочной структуры и тем самым облегчения доступа к искомому участку гена. Пробы классифицируются по месту присоединения к молекуле ДНК. Материалом для FISH-реакции в клинической практике служат парафиновые срезы тканей, мазки и отпечатки.

FISH-реакция позволяет находить изменения, произошедшие в молекуле ДНК в результате увеличения числа копий гена, потери гена, изменения числа хромосом и качественных изменений — перемещения локусов генов как в одной и той же хромосоме, так и между двумя хромосомами.

Для обработки полученных данных при применении FISH-реакции и изучения зависимости между копийностью генов трех исследумых групп используется коэффициент корреляции Спирмена.

Для меланомы характерно увеличение копийности по сравнению с невусом и диспластическим невусом.

Простой невус по сравнению с диспластическим невусом имеет меньше нарушений в копийности (т.е. больше нормальных копийностей).

Для построения решающих правил, позволяющих предсказать, относится ли образец к тому или иному классу (дифференциальная диагностика простых и диспластических невусов), используется математический аппарат «деревьев решений» (decision trees). Данный подход хорошо зарекомендовал себя на практике, а результаты применения указанного метода (в отличие от многих других методов, например нейронных сетей) могут быть наглядно интерпретированы для построения решающих правил для дифференциации простого, диспластического невусов и меланомы. Исходными данными во всех случаях являлись копийности четырех генов.

Задачу по построению решающего правила для дифференциальной диагностики разбивают на несколько этапов. На первом этапе дифференцируют меланому и невус, не учитывая тип невуса. На следующем этапе строят решающее правило для разделения простого и диспластического невусов. Наконец на последнем этапе возможно построение «дерева решений» для определения степени дисплазии диспластического невуса.

Подобное разделение задачи классификации невусов на подзадачи позволяет достичь высокой точности предсказаний на каждом из этапов. Входными данными для построения «дерева решений» служат данные о копийности четырех генов для пациентов с диагнозом «меланома» и пациентов с диагнозом «не меланома» (пациенты с различными типами невуса — простым и диспластическим). Для каждого пациента имеются данные о копийности генов для 30 клеток.

Таким образом, разделение задачи предсказания диагноза на несколько этапов позволяет строить высокоточные решающие правила не только для дифференцирования между меланомой и невусами, но и для определения типа невусов и предсказания степени дисплазии для диспластического невуса. Построенные «деревья решений» являются наглядным способом предсказания диагноза по сведениям о копийностях генов и легко могут быть использованы в клинической практике при дифференциации доброкачественных, предзлокачественных и злокачественных меланоцитарных новообразований кожи. Предлагаемый дополнительный метод дифференциальной диагностики особенно важен при иссечении гигантских врожденных пигментных невусов и диспластических невусов у пациентов детского возраста, поскольку при обращении таких пациентов в медицинские учреждения отмечается высокий процент диагностических ошибок. Результаты использования описанного метода высокоэффективны, целесообразно его использовать при диагностике пигментных опухолей кожи, особенно у пациентов с FAMM-cиндромом.

Инвазивные методы пренатальной диагностики позволяют не только заглянуть в будущее и достоверно предсказать ожидают ли еще неродившегося малыша заболевания, связанные с внутриутробными пороками развития, но и выяснить характер и причины врожденных патологий.

Однако любая информация имеет ценность лишь тогда, когда является своевременной. Если речь идет о состоянии развития плода, скорость получения результатов анализов приобретает жизненно-важное значение.

Поэтому, FISH-метод, позволяющий оценить наличие у эмбриона наиболее часто встречающихся аномалий развития в максимально короткие сроки, весьма востребован в генетической диагностике.

FISH– аббревиатура, в расшифровке которой кроется суть технологии выявления хромосомных аномалий – fluorescence in situ hybridization – флюоресцентной гибридизации в «домашней» среде.

Этот прием, предложенный в конце 70-х годов прошлого века Дж. Голлом и М.-Л. Пардью, основан на возможности восстановления последовательности расположения фрагментов нуклеиновых кислот (ДНК или РНК) после их денатурации.

Авторы разработали метод, позволяющий с помощью гибридизации in situ искусственно созданных меченых ДНК-проб (зондов) и цитогенетического материала, взятого на анализ, выявить количественные и качественные отклонения интересующих хромосом.

В конце прошлого века, после успешного применения для окрашивания ДНК-зондов флуоресцентных красителей, FISH-метод получил свое название и с тех пор интенсивно совершенствуется и вариатизируется.

Современные методики FISH-анализа стремятся к тому, чтобы обеспечить возможность получения максимально полной информации для анализа забранного генетического материала за одну процедуру гибридизации.

Дело в том, что единожды после гибридизации можно оценить лишь ограниченное количество хромосом одного и того же цитогенетического материала. Способность же к повторной гибридизации ДНК-цепочек снижается от раза к разу.

Поэтому, на данный момент в генетической диагностике наиболее часто метод гибридизации in situ применяется для быстрого ответа на вопросы об имеющихся, наиболее распространенных анеуплоидий по 21, 13, 18 хромосомах, а также по половым хромосомам X, Y.

Для проведения анализа FISH-методом подходят любые тканевые или клеточные образцы.

В пренатальной диагностике, это могут быть образцы крови, эякулята, или .

Быстрота получения результатов обеспечивается тем, что клетки, полученные из забранного на анализ материала, не нужно культивировать в питательных средах, добиваясь их деления до нужного количества, как при классическом способе кариотипирования.

Отобранный материал проходит специальную подготовку для получения концентрированной чистой клеточной суспензии. Далее проводят процесс денатурации ДНК-пробы и нативных ДНК исследуемого образца до одноцепочечного состояния и процесс гибридизации, во время которого окрашенные ДНК-зонды инкубируются с ДНК образца.

Таким образом, визуализируются искомые (окрашенные) хромосомы в клетке, оценивается их количество, строение генетических структур и т.п. Рассмотреть светящиеся цепочки ДНК позволяет окуляр особого флуоресцентного микроскопа.

В настоящее время FISH-метод широко используется в диагностических целях для выявления генетических заболеваний, хромосомных аберраций в репродуктивной медицине, онкологии, гематологии, в биологической дозиметрии и т.п.

Как применяют FISH-диагностику плода?

В сфере репродуктивной медицины FISH-метод, как один из приемов молекулярной цитогенетической диагностики, используется на всех этапах.

  • парой.

Для определения кариотипа будущих родителей – проводится единожды, так как геном человека неизменен в течение всей жизни.

Кариотипирование пары перед зачатием ребенка поможет выявить являются ли родители носителями генетических патологий, передающихся по наследству, в том числе скрытых. А также общее состояние генома будущих мамы и папы, которое может повлиять на успешность зачатия малыша и вынашивания беременности.

Диагностика FISH-методом в данном случае зачастую выступает как дополнительное обследование к классическому кариотипированию, при выявлении хромосомных патологий в исследуемом материале (венозной крови родителей), если есть подозрение на мозаицизм.

Дообследование FISH-методом позволит достоверно подтвердить или опровергнуть наличие подозреваемой аномалии в клетках будущего родителя.

  • Исследование эякулята.

Показано при трудностях с репродукцией в паре по «мужскому фактору». Анализ спермы FISH-методом позволит оценить уровень аномальных по хромосомному набору сперматозоидов, а также определить является ли мужчина носителем генетических заболеваний, сцепленных с полом.

Если пара в дальнейшем прибегнет к зачатию с помощью ЭКО, FISH-анализ эякулята позволит отобрать наиболее качественные сперматозоиды для оплодотворения яйцеклетки.

  • При ЭКО.

Для предимплантационной генетической диагностики (ПГД). По результатам исследований кариотипа родителей определяются возможные хромосомные, генетические абберации, которые могут быть переданы эмбриону.

Благодаря возможностям FISH-диагностики, исследование генетического здоровья образовавшихся эмбрионов можно осуществить в считанные часы до переноса в полость матки, чтобы обеспечить наступление беременности заведомо здоровым плодом.

Кроме того, возможности ПГД позволяют определить половую принадлежность эмбрионов, а, следовательно, «заказать» пол будущего ребенка, если это необходимо.

  • В период вынашивания беременности.

В пренатальной диагностике: анализ плодовых клеток, полученных с помощью биопсии ворсин хориона, амниоцентеза или кордоцентеза, методом FISH медицинские центры обычно предлагают в дополнение к классическому генетическому исследованию клеток плода (кариотипированию).

Этот метод незаменим, когда необходимо быстрое получение ответа о наличии у плода наиболее распространенных хромосомных пороков: трисомии по 21, 18, 13 хромосомах, аббераций в хромосомах X и Y, иногда также анеуплоидий по 14 (или 17),15, 16 хромосомам.

Достоинства анализа FISH-методом

Проведение генетического анализа FISH-методом, хоть и остается на сегодняшний день вспомогательным методом диагностики хромосомных патологий, однако целесообразность его проведения обуславливают неоспоримые преимущества:

  • скорость получения результатов, касающиеся тестируемых хромосом – в течение нескольких часов – не более 72-х.

Это может быть важно, если от диагноза генетиков зависит судьба беременности;

  • высокая чувствительность и достоверность метода FISH–успешное проведение анализа возможно на ничтожно малом количестве биоматериала – достаточно одной клетки, погрешность результатов при этом, не более 0,5%.

Это может быть важно при ограниченном количестве клеток в исходном образце, например, при плохом их делении.

  • возможность проведения диагностики FISH-методом на любом сроке беременности (с 7-ой недели) и по любому биологическому образцу: фрагменты хориона, амниотическая жидкость, плодная кровь и т.п.

Где можно сделать диагностику FISH-методом

В Москве FISH-метод для пренатальной диагностики хромосомных отклонений плода применяют в следующих медицинских центрах:

Как правило, клиники предлагают услугу FISH-диагностики в рамках полного кариотипирования плода путем инвазивного вмешательства за дополнительную плату. И, как правило, будущие родители согласны доплатить, ведь благодаря FISH-методу уже через пару суток можно узнать о своем малыше самое главное


FISH-тест – это один из наиболее современных способов анализа хромосомного набора. Сама аббревиатура «FISH» сложилась из английского названия методики - флуоресцентная гибридизация in situ. Данный тест позволяет с высокой точностью (включая конкретные гены и их сегменты) изучить генетический материал клетки.

Этот способ сегодня используется для диагностики некоторых типов раковых опухолей, так как злокачественное перерождение клетки обусловлено изменениями ее генома. Соответственно, обнаружив характерные нарушения в генах, можно с высокой достоверностью отнести эту клетку к раковым. Кроме того, FISH-тест применяется и для подтверждения уже установленного диагноза, а также для получения дополнительных данных о возможности применения специфических химиопрепаратов с целью проведения процедуры химиотерапии при раке груди и уточнения прогноза заболевания.

Хорошим примером использования FISH-теста может послужить его проведение у пациентов с раковой опухолью молочной железы. С помощью этой методики ткани, полученные при биопсии, исследуются на наличие копий гена под названием HER-2. Если этот ген присутствует, это означает, что на поверхности клеток расположено большое число HER2-рецепторов. Они чувствительны к сигналам, стимулирующим развитие и размножение опухолевых элементов. В этом случае открывается возможность для эффективного использования трастузумаба – этот препарат блокирует активность HER2-рецепторов, а значит, угнетает рост опухоли.

Как проводится FISH-тест?

В ходе обследования в биоматериал, полученный от пациента, вводится специальное вещество-краситель, содержащее флуоресцентные метки. Их химическая структура такова, что они способны связываться исключительно с четко определенными участками хромосомного набора клетки. После этого окрашенный тканевой образец помещается под флуоресцентный микроскоп. Если исследователь обнаруживает участки хромосом с присоединенными к ним светящимися метками, то это является показателем отклонений, которые свидетельствуют о наличии изменений генома, относящихся к онкологическому типу.

Эти отклонения в структуре хромосом бывают нескольких видов:
транслокация – перемещение части хромосомного материала на новую позицию в пределах той же самой или другой хромосомы;
инверсия – поворот части хромосомы на 1800 без отделения от основного ее тела;
делеция – потеря какого-либо хромосомного участка;
дупликация – копирование части хромосомы, что приводит к увеличению количества копий одного и того же гена, содержащегося в клетке.

Каждое их таких нарушений несет в себе определенные диагностические признаки и информацию. Так, например, транслокации могут свидетельствовать о наличии лейкемий, лимфом или сарком, а наличие генных дупликаций помогает назначить наиболее эффективную терапию.

В чем преимущество FISH-теста?

По сравнению с традиционными анализами генетического материала клеток, FISH-тест обладает намного большей чувствительностью. Он позволяет выявлять даже самые незначительные изменения генома, которые другими способами обнаружить не получается.

Еще одно преимущество FISH-теста заключается в том, что его можно использовать на материале, недавно полученном от пациента. Для стандартного цитогенетического анализа необходимо предварительно вырастить клеточную культуру, то есть дать клеткам пациента размножиться в лабораторных условиях. Этот процесс занимает около 2 недель, и еще неделя уходит на проведение обычного исследования, в то время как результат FISH-теста будет получен всего через несколько суток.

Неуклонное развитие медицинской науки постепенно приводит к удешевлению FISH-теста и все более широкому его вхождению в повседневную практику специалистов-онкологов.

Статьи по теме