Определение, формула, свойства. Что такое мышьяк? Характеристика, свойства и применение Физические свойства мышьяка

Мышьяк - химический элемент 5-группы 4-го периода таблицы Менделеева с атомным номером 33. Является хрупким полуметаллом стальной окраски с зеленоватым оттенком. Сегодня мы с вами подробнее рассмотрим, что такое мышьяк, и познакомимся с основными свойствами это элемента.

Общая характеристика

Уникальность мышьяка заключается в том, что он встречается буквально везде - в горных породах, воде, минералах, почве, растительном и животном мире. Поэтому его часто называют не иначе как вездесущий элемент. Мышьяк беспрепятственно распределяется по всем географическим регионам планеты Земля. Причиной тому являются летучесть и растворимость его соединений.

Название элемента связано с его использованием для истребления грызунов. Латинское слово Arsenicum (формула мышьяка в периодической таблице - As) образовалось от греческого Arsen, означающего «сильный» или «мощный».

В организме среднестатистического взрослого человека содержится порядка 15 мг этого элемента. В основном он концентрируется в тонком кишечнике, печени, легких и эпителии. Всасывание вещества осуществляется желудком и кишечником. Антагонистами мышьяка выступают сера, фосфор, селен, некоторые аминокислоты, а также витамины Е и С. Сам элемент ухудшает всасывание цинка, селена, а также витаминов А, С, В9 и Е.

Как и многие другие вещества, мышьяк может быть и ядом, и лекарством, все зависит от дозы.

Среди полезных функций такого элемента, как мышьяк, можно выделить:

  1. Стимулирование усвоения азота и фосфора.
  2. Улучшение кроветворения.
  3. Взаимодействием с цистеином, белками и липоевой кислотой.
  4. Ослабление окислительных процессов.

Суточная потребность в мышьяке для взрослого человека составляет от 30 до 100 мкг.

Историческая справка

Один из этапов развития человечества носит названием «бронзовый», так как в этот период люди сменили каменное оружие на бронзовое. Данный металл представляет собой сплав олова с медью. Однажды при выплавке бронзы мастера случайно использовали вместо медной руды продукты выветривания медно-мышьякового сульфидного минерала. Полученный сплав легко отливался и отлично ковался. В те времена никто еще не знал, что такое мышьяк, но залежи его минералов намеренно искали для производства качественной бронзы. Со временем от этой технологии отказались, очевидно, из-за того, что при ее использовании часто возникали отравления.

В Древнем Китае пользовались твердым минералом под названием реальгар (As 4 S 4). Его применяли для резьбы по камню. Так как под воздействием температуры и света реальгар превращался в другое вещество - As 2 S 3 , от него также вскоре отказались.

В 1 веке до нашей эры, римский ученый Плиний Старший вместе с ботаником и врачом Диоскоридом описывали минерал мышьяка под названием аурипигмент. Его название переводится с латыни как «золотая краска». Вещество применяли как желтый краситель.

В средневековье алхимики классифицировали три формы элемента: желтую (сульфид As 2 S 3), красную (сульфид As 4 S 4) и белую (оксид As 2 О 3). В 13 веке при нагреве желтого мышьяка с мылом алхимики получали металлоподобное вещество. Вероятнее всего, оно было первым образцом чистого элемента, полученного искусственным образом.

Что такое мышьяк в чистом виде, узнали в начале 17 века. Произошло это, когда Иоганн Шредер, восстанавливая древесным углем оксид, выделил этот элемент. Спустя несколько лет французскому химику Никола Лемери удалось получить вещество путем нагрева его оксида в смеси с мылом и поташом. В следующем веке мышьяк был уже хорошо известен в статусе полуметалла.

Химические свойства

В периодической системе Менделеева химический элемент мышьяк расположен в пятой группе и причислен к семейству азота. В естественных условиях он представлен единственным стабильным нуклидом. Искусственным путем получают более десяти радиоактивных изотопов вещества. Диапазон значений периода полураспада у них довольно широкий - от 2-3 минут до нескольких месяцев.

Хоть мышьяк иногда и нарекают металлом, он скорее относится к неметаллам. В соединении с кислотами он не образует солей, однако является сам по себе кислотообразующим веществом. Именно поэтому элемент идентифицируют как полуметалл.

Мышьяк, как и фосфор, может находиться в различных аллотропных конфигурациях. Одна из них - серый мышьяк, представляет собой хрупкое вещество, которое на изломе имеет металлический блеск. Электропроводность данного полуметалла в 17 раз ниже, чем у меди, но в 3,6 выше, чем у ртути. С повышением температуры она уменьшается, что характерно для типичных металлов.

При быстром охлаждении мышьяковых паров до температуры жидкого азота (-196 °С) можно получить мягкое вещество желтоватого цвета, напоминающее желтый фосфор. При нагревании и воздействии ультрафиолета желтый мышьяк моментально превращается в серый. Реакция сопровождается выделением тепла. Когда пары конденсируются в инертной атмосфере, образуется еще одна форма вещества - аморфная. Если осадить пары мышьяка, на стекле появляется зеркальная пленка.

Внешняя электронная оболочка данного вещества имеет такое же строение, как фосфор и азот. Как и фосфор, мышьяк образует три ковалентные связи. При сухом воздухе он имеет устойчивую форму, а с повышением влажности - тускнеет и покрывается черной оксидной пленкой. При воспламенении пары вещества горят голубым пламенем.

Так как мышьяк инертен, на него не воздействуют вода, щелочи и кислоты, которые не обладают окислительными свойствами. При контакте вещества с разбавленной азотной кислотой образуется ортомышьяковистая кислота, а с концентрированной - ортомышьяковая. Также мышьяк реагирует с серой, образуя сульфиды разного состава.

Нахождение в природе

В природных условиях такой химический элемент, как мышьяк, часто встречается в соединениях с медью, никелем, кобальтом и железом.

Состав минералов, которые образует вещество, обусловлен его полуметаллическими свойствами. На сегодняшний день известно более 200 минералов этого элемента. Так как мышьяк может находиться в отрицательной и положительной степенях окисления, он легко взаимодействует со многими другими веществами. При положительном окислении мышьяка он выполняет функции металла (в сульфидах), а при отрицательном - неметалла (в арсенидах). Содержащие этот элемент минералы имеют довольно сложный состав. В кристаллической решетке полуметалл может заменять атомы серы, сурьмы и металлов.

Многие соединения металлов с мышьяком с точки зрения состава скорее относятся не к арсенидам, а к интерметаллическим соединениям. Некоторые из них отличаются переменным содержанием главного элемента. В арсенидах одновременно могут присутствовать сразу несколько металлов, атомы которых при близком радиусе ионов могут замещать друг друга. Все минералы, которые причисляют к арсенидам, наделены металлическим блеском, непрозрачны, тяжелы и прочны. Среди естественных арсенидов (всего их около 25) можно отметить следующие минералы: скуттерудит, раммельсбрергит, никелин, леллингрит, клиносаффлорит и прочие.

Интересными с точки зрения химии являются те минералы, в которых мышьяк присутствует одновременно с серой и играет роль металла. Они имеют очень сложное строение.

Природные соли мышьяковой кислоты (арсенаты) могут иметь разную окраску: эритрит - кобальтовую; симплезит, аннабергит и скорид - зеленую, а рузвельтит, кеттигит и гернесит - бесцветную.

По своим химическим свойствам мышьяк достаточно инертен, поэтому его можно встретить в самородном состоянии в виде сросшихся кубиков и иголочек. Содержание примесей в самородке не превышает 15 %.

В почве содержание мышьяка колеблется в приделах 0,1-40 мг/кг. В районах вулканов и местах, где залегает мышьяковая руда, этот показатель может доходить до 8 г/кг. Растения в таких местах гибнут, а животные болеют. Подобная проблема характерна для степей и пустынь, где не происходит вымывание элемента из почвы. Обогащенными считаются глинистые породы, так как в них содержание мышьяковистых веществ вчетверо больше, чем в обычных.

Когда чистое вещество в процессе биометилирования превращается в летучее соединение, оно может выноситься из почвы не только водой, но и ветром. В обычных районах концентрация мышьяка в воздухе составляет в среднем 0,01 мкг/м 3 . В промышленных же районах, где работают заводы и электростанции, этот показатель может достигать и 1 мкг/м 3 .

Умеренное количество мышьяковистых веществ может содержаться в составе минеральной воды. В лечебных минеральных водах, согласно общепринятым нормативам, концентрация мышьяка не должна превышать 70 мкг/л. Здесь стоит отметить, что даже при более высоких показателях отравление может произойти только при регулярном употреблении такой воды.

В природных водах элемент может находиться в различных формах и соединениях. Трехвалентный мышьяк, к примеру, гораздо токсичнее, чем пятивалентный.

Получение мышьяка

Элемент получают как побочный продукт переработки свинцовых, цинковых, медных и кобальтовых руд, а также во время добывания золота. В составе некоторых полиметаллических руд содержание мышьяка может доходить до 12 %. При их нагревании до 700 °С происходит сублимация - переход вещества из твердого состояния в газообразное, минуя жидкое. Важным условием для осуществления этого процесса является отсутствие воздуха. При нагревании мышьяковых руд на воздухе образуется летучий оксид, получивший название «белый мышьяк». Подвергнув его конденсации с углем, восстанавливают чистый мышьяк.

Формула получения элемента выглядит следующим образом:

  • 2As 2 S 3 +9O 2 =6SO 2 +2As 2 O 3 ;
  • As 2 O 3 +3C=2As+3CO.

Добыча мышьяка относится к опасным производствам. Парадоксальным является тот факт, что наибольшее загрязнение окружающей среды этим элементом происходит не вблизи предприятий, которые его производят, а около электростанций и заводов цветной металлургии.

Еще один парадокс состоит в том, что объемы получения металлического мышьяка превышают потребность в нем. В сфере добывания металлов это очень редкое явление. Излишки мышьяка приходится утилизировать путем захоронения металлических контейнеров в старые шахты.

Наибольшие залежи мышьяковых руд сосредоточены в таких странах:

  1. Медно-мышьяковые - США, Грузия, Япония, Швеция, Норвегия и государства Средней Азии.
  2. Золото-мышьяковые - Франция и США.
  3. Мышьяково-кобальтовые - Канада и Новая Зеландия.
  4. Мышьяково-оловянные - Англия и Боливия.

Определение

Лабораторное определение мышьяка производится путем осаждения желтых сульфидов из солянокислых растворов. Следы элемента определяют по методу Гутцейта или с помощью реакции Марша. В последние полвека были созданы всяческие чувствительные методики анализа, которые позволяют выявить даже совсем небольшое количество данного вещества.

Некоторые соединения мышьяка анализируют с помощью селективного гибридного метода. Он предполагает восстановление исследуемого вещества в летучий элемент арсин, который затем вымораживают в емкости, охлажденной с помощью жидкого азота. Впоследствии при медленном подогреве содержимого емкости различные арсины начинают испаряться отдельно друг от друга.

Промышленное использование

Практически 98% добываемого мышьяка не применяют в чистом виде. Широкое использование в различных отраслях промышленности получили его соединения. Ежегодно идет добыча и переработка сотен тон мышьяка. Его добавляют в подшипниковые сплавы для повышения их качества, применяют для повышения твердости кабелей и свинцовых аккумуляторов, а также используют в производстве полупроводниковых приборов вместе с германием или кремнием. И это лишь самые масштабные направления.

Как легирующая добавка мышьяк придает проводимость некоторым «классическим» полупроводникам. Его добавка к свинцу значительно увеличивает прочность металла, а к меди - текучесть, твердость и коррозионную стойкость. Мышьяк также иногда добавляют в некоторые сорта бронз, латуней, баббитов и типографических сплавов. Однако зачастую металлурги стараются все же избегать использования этого вещества, так как оно небезопасно для здоровья. Для некоторых металлов большие количества мышьяка также вредны, поскольку они ухудшают свойства исходного материала.

Оксид мышьяка нашел применение в стекловарении в качестве осветлителя стекла. В этом направлении его использовали еще древние стеклодувы. Мышьяковистые соединения являются сильным антисептическим средством, поэтому с их помощью консервируют меха, чучела и шкуры, а также создают необрастающие краски для водного транспорта и пропитки для древесины.

Благодаря биологической активности некоторых производных мышьяка, вещество используется в производстве стимуляторов роста растений, а также лекарственных препаратов, в том числе противоглистных средств для скота. Средства, содержащие данный элемент, применяют для борьбы с сорняками, грызунами и насекомых. Раньше, когда люди не задумывались, о том, можно ли мышьяк использовать для производства продуктов питания, в сельском хозяйстве элемент имел более широкое применение. Однако после выявления его ядовитых свойств веществу пришлось искать замену.

Важными областями применения данного элемента являются: производство микросхем, волоконной оптики, полупроводников, пленочной электроники, а также выращивание микрокристаллов для лазеров. Для этих целей используют газообразные арсины. А изготовление лазеров, диодов и транзисторов не обходится без арсенидов галлия и индия.

Медицина

В тканях и органах человека элемент представлен главным образом в белковой фракции, в меньше мере - в кислоторастворимой. Он участвует в брожении, гликолизе и окислительно-восстановительных реакциях, а также обеспечивает распад сложных углеводов. В биохимии соединения данного вещества используются в качестве специфических ферментных ингибиторов, которые необходимы для изучения метаболических реакций. Мышьяк необходим человеческому организму как микроэлемент.

Применение элемента в медицине менее обширное, нежели в производстве. Его микроскопические дозы используются для диагностики всяческих заболеваний и патологий, а также лечения стоматологических болезней.

В стоматологии мышьяк применяет для удаления пульпы. Небольшая порция пасты содержащей мышьяковистую кислоту, буквально за сутки обеспечивает отмирание зуба. Благодаря ее действию, удаление пульпы проходит безболезненно и беспрепятственно.

Широкое применение мышьяк получил также в лечении легких форм лейкоза. Он позволяет снизить или даже подавить патологическое формирование лейкоцитов, а также простимулировать красное кроветворение и выделение эритроцитов.

Мышьяк как яд

Все соединения данного элемента являются ядовитыми. Острое отравление мышьяком приводит к болям в животе, диареи, тошноте и угнетению центральной нервной системы. Симптоматика интоксикации этим веществом напоминает симптоматику холеры. Поэтому ранее в судебной практике часто встречались случаи умышленного отравления мышьяком. В криминальных целях элемент наиболее часто использовался в виде триоксида.

Симптомы интоксикации

На первых порах отравление мышьяком проявляется металлическим вкусом во рту, рвотой и болями в животе. Если не принять меры, могут начаться судороги и даже паралич. В самом худшем случае отравление может привести к летальному исходу.

Причиной отравления могут стать:

  1. Вдыхание пыли, содержащей мышьяковистые соединения. Происходит, как правило, на заводах по получению мышьяка, на которых не соблюдаются правила охраны труда.
  2. Употребление отравленной пищи или воды.
  3. Применение некоторых лекарственных средств.

Первая помощь

Наиболее общедоступным и известным противоядием в случае интоксикации мышьяком является молоко. Содержащийся в нем белок казеин образует с ядовитым веществом нерастворимые соединения, которые не могут всасываться в кровь.

В случае острого отравления для быстрой помощи пострадавшему ему нужно сделать промывание желудка. В больничных условиях проводят также гемодиализ, нацеленный на очистку почек. Из лекарственных препаратов применяют универсальный антидот - "Унитиол". Дополнительно могут быть использованы вещества-антагонисты: селен, цинк, сера и фосфор. В дальнейшем больному в обязательном порядке назначают комплекс из аминокислот и витаминов.

Дефицит мышьяка

Отвечая на вопрос: «Что такое мышьяк?», стоит отметить, что в небольших количествах он необходим человеческому организму. Элемент считается иммунотоксичным, условно эссенциальным. Он принимает участие практически во всех важнейших биохимических процессах человеческого организма. На дефицит этого вещества могут указывать такие признаки: снижение в крови концентрации триглицеридов, ухудшения в развитии и росте организма.

Как правило, при отсутствии серьезных проблем со здоровьем о недостатке мышьяка в рационе переживать не приходится, так как элемент содержится едва ли не во всех продуктах растительного и животного происхождения. Этим веществом особенно богаты морепродукты, злаки, виноградное вино, соки, и питьевая вода. В течение суток из организма выводится 34% потребляемого мышьяка.

При анемии вещество принимают для повышения аппетита, а при отравлении селеном он выступает действенным противоядием.

Наш рассказ об элементе не очень распространенном, но достаточно широко известном; об элементе, свойства которого до несовместимости противоречивы. Так же трудно совместить и роли, которые играл и играет этот элемент в жизни человечества. В разное время, в разных обстоятельствах, в разном виде он выступает как яд и как целительное средство, как вредный и опасный отход производства, как компонент полезнейших, незаменимых веществ. Итак, элемент с атомным номером 33.

Поскольку относится к числу элементов, точная дата открытия которых не установлена, ограничимся констатацией лишь нескольких достоверных фактов: ; известен с глубокой древности: в трудах Диоскорида (I в. н. э.) упоминается о прокаливании , которое сейчас называют сернистым мышьяком; в III-IV в. в отрывочных записях, приписываемых Зосимосу, есть упоминание о металлическом мышьяке.

У греческого писателя Олимпиодоруса (V в. н. э.) описано изготовление белого мышьяка обжигом сульфида; в VIII в. арабский алхимик Гебер получил трехокись мышьяка; в средние века люди начали сталкиваться с трех-окисью мышьяка при переработке мышьяксодержащих руд, и белый дым газообразного As2О3 получил название рудного дыма; получение свободного металлического мышьяка приписывают немецкому алхимику Альберту фон Больштедту и относят примерно к 1250 г., хотя греческие и арабские алхимики бесспорно получали (нагреванием его трехокиси с органическими веществами) раньше Больштедта; в 1733 г. доказано, что белый мышьяк -это «земля», окись металлического мышьяка; в 1760 г. француз Луи Клод Каде получил первое органическое соединение мышьяка, известное как жидкость Каде или окись «какодила»; формула этого [(CH3)2As] 2О; в 1775 г. Карл Вильгельм Шееле получил мышьяковистую кислоту и мышьяковистый ; в 1789 г. Антуан Лоран признал мышьяк самостоятельным химическим элементом.

Элементный мышьяк - серебристо-серое или оловянно-белое вещество, в свежем изломе обладающее металлическим блеском. Но на воздухе он быстро тускнеет. При нагревании выше 600° С мышьяк возгоняется, не плавясь, а под давлением 37 атм плавится при 818° С. Мышьяк - единственный металл, у которого температура кипения при нормальном давлении лежит ниже точки плавления.

Мышьяк оружие уничтожения

Вновь приходится возвращаться к смертоносным свойствам элемента № 33. Не секрет, что его широко использовали, а возможно, и сейчас используют в производстве химического оружия, не менее преступного, чем ядерное.

Соединения мышьяка входят во все основные группы известных боевых отравляющих веществ (ОВ). Среди ОВ общеядовитого действия - арсин, мышьяковистый AsH3 . Это самое ядовитое из всех соединений мышьяка: достаточно в течение получаса подышать воздухом, в литре которого содержится 0,00005 г AsH3, чтобы через несколько дней отправиться на тот свет. Концентрация AsH3 0,005 г/л убивает мгновенно. Считают, что биохимический механизм действия AsH3 состоит в том, что его молекулы «блокируют» молекулы фермента эритроцитов - каталазы; из-за этого в крови накапливается , разрушающая . Активированный уголь сорбирует арсин слабо, поэтому против арсина обычный противогаз не защитник.

В годы первой мировой войны были попытки применить арсин, но летучесть и неустойчивость этого помогли избежать его массового применения. Сейчас, к сожалению, технические возможности для длительного заражения местности арсином есть. Он образуется при реакции арсенидов некоторых металлов с водой. Да и сами арсениды опасны для людей и животных, американские войска во Вьетнаме доказали это… Арсениды многих металлов тоже следовало бы отнести к числу ОВ общего действия.

Другая большая группа отравляющих веществ - вещества раздражающего действия - почти целиком состоит из соединений мышьяка. Ее типичные представители дифенилхлорарсин (C6H5)2AsCl и дифенилцианарсин (C6H5)2AsCN.

Вещества этой группы избирательно действуют на нервные окончания слизистых оболочек - главным образом оболочек верхних дыхательных путей. Это вызывает рефлекторную реакцию организма освободиться от раздражителя, чихая или кашляя. В отличие от слезоточивых ОВ эти вещества даже при легком отравлении действуют и после того, как пораженный выбрался из отравленной атмосферы. В течение нескольких часов человека сотрясает мучительный , появляется боль в груди и в голове, начинают непроизвольно течь слезы. Плюс к этому рвота, одышка, чувство страха; все это доводит до совершенного изнурения, и вдобавок эти вещества вызывают общее отравление организма.

Но хватит об этом. Человечество живет надеждой, что отравляющие вещества, о которых мы рассказали (и еще многие им подобные), никогда больше не будут использованы.

Мышьяк - классический яд средневековых и современных отравителей
и лекарство в современной спортивной и реабилитационной медицине
Токсические и ядовитые камни и минералы

Мышьяк (лат. Arsenicum), As, химический элемент V группы периодической системы Менделеева, атомный номер 33, атомная масса 74,9216; кристаллы серо-стального цвета. Элемент состоит из одного устойчивого изотопа 75 As. Ядовитый в любом виде, лекарство.

Историческая справка.

Природные соединения мышьяка с серой (аурипигмент As 2 S 3 , реальгар As 4 S 4) были известны народам древнего мира, которые применяли эти минералы как лекарства и краски. Был известен и продукт обжигания сульфидов мышьяка - оксид мышьяка (III) As 2 O 3 ("белый мышьяк").

Название arsenikon встречается уже в начале н.э.; оно произведено от греческого arsen - сильный, мужественный и служило для обозначения соединений мышьяка (по их действию на организм). Русское название, как полагают, произошло от "мышь" ("смерть" - по применению препаратов мышьяка для убийства яков, а также истребления мышей и крыс). Химическое получение мышьяка в свободном состоянии приписывают 1250 году н.э. В 1789 году А. Лавуазье включил мышьяк в список химических элементов.

Мышьяк. Белореченское м-ние, Сев. Кавказ, Россия. ~10x7 см. Фото: А.А. Евсеев.

Распространение мышьяка в природе.

Среднее содержание мышьяк в земной коре (кларк) 1,7*10 -4 % (по массе), в таких количествах он присутствует в большинстве изверженных пород. Поскольку соединения мышьяка летучи при высоких температурах (сухая вулканическая возгонка на батолитах), элемент возгоняется в амтосферу и воздух в виде металлических паров (миражи – воздух внизу рябит) не накапливается при возгоночных по трещинам и трубкам магматических лавовых процессах; он концентрируется, осаждаясь из паров и горячих глубинных вод на катализаторах кристаллообразования – металлическом железе (вместе с S, Se, Sb, Fe, Co, Ni, Cu и другими элементами).

При извержении вулканов (при сухой возгонке мышьяка) мышьяк в виде своих летучих соединений попадает в атмосферу. Так как мышьяк многовалентен, на его миграцию оказывает влияние окислительно-восстановительная среда. В окислительных условиях земной поверхности образуются арсенаты (As 5+) и арсениты (As 3+).

Это редкие минералы, встречающиеся на участках месторождений мышьяка. Еще реже встречается самородный мышьяк и минералы As 2+ . Из минералов и соединений мышьяка (около 180) промышленное значение имеет арсенопирит FeAsS (атом железа – центр формирования пирита, формула стартового "однокристалла" - Fe + (As + S)).


Арсенопиритовая жила. Трифоновская шх., Кочкарское м-ние (Au), Пласт, Ю. Урал, Россия. Мышьяки. Фото: А.А. Евсеев.

Малые количества мышьяка необходимы для жизни. Однако в районах месторождений мышьяка и деятельности молодых вулканов почвы местами содержат до 1% мышьяка, с чем связаны болезни скота, гибель растительности. Накопление мышьяка особенно характерно для ландшафтов степей и пустынь, в почвах которых мышьяк малоподвижен. Во влажном климате и при поливе растений и почв мышьяк вымывается из почв.

В живом веществе в среднем 3·10 -5 % мышьяка, в реках 3·10 -7 %. Мышьяк, приносимый реками в океан, сравнительно быстро осаждается. В морской воде 1*10 -7 % мышьяка (там много золота, которое его вытесняет), но зато в глинах и сланцах мышьяка (по берегам рек и водоемов, в глинистых черных формированиях и по краям карьеров) - 6,6*10 -4 %. Осадочные железные руды, железомарганцевые и иные железные конкреции часто обогащены мышьяком.

Физические свойства мышьяка.

Мышьяк имеет несколько аллотропических модификаций. При обычных условиях наиболее устойчив так называемых металлический, или серый, мышьяк (α-As) - серостальная хрупкая кристаллическая маса (по свойствам – как пирит, золотая обманка, железный колчедан); на свежем изломе имеет металлический блеск, на воздухе быстро тускнеет, так как покрывается тонкой пленкой As 2 O 3 .

Мышьяк редко именуется серебряная обманка – дело о Приказчиках царя А.М. Романова в середине XVII в., "серебришко", не ковкое, бывает в порошке, можно размолоть - яд для Царя Всея Руси. Самый знаменитый Испанский скандал в таверне отравителей у мельницы "Дон Кихот" по дороге в г. Альмаден, Испания, где на Европейском континенте добывают красную киноварь (скандалы о продажах девственников Краснодарского Края РФ, пос. Новый, кристаллическая красная киноварь, не хотят работать).


Арсенопирит. Друза призматических кристаллов со сферолитами кальцита. Фрайберг, Саксония, Германия. Фото: А.А. Евсеев.

Кристаллическая решетка серого мышьяка ромбоэдрическая (а = 4,123Å, угол α = 54 o 10", х = 0,226), слоистая. Плотность 5,72 г/см 3 (при 20 o C), удельное электрическое сопротивление 35*10 -8 ом*м, или 35*10 -6 ом*см, температурный коэффициент электросопротивления 3,9·10 -3 (0 o -100 o C), твердость по Бринеллю 1470 Мн/м 2 , или 147 кгс/мм 2 (3-4 по Moocy); мышьяк диамагнитен.

Под атмосферным давлением мышьяк возгоняется при 615 o C не плавясь, так как тройная точка α-As лежит при 816 o C и давлении 36 aт.

Пар мышьяка состоит до 800 o C из молекул As 4 , выше 1700 o C - только из As 2 . При конденсации пара мышьяка на поверхности, охлаждаемой жидким воздухом, образуется желтый мышьяк - прозрачные, мягкие как воск кристаллы, плотностью 1,97 г/см 3 , похожие по свойствам на белый фосфор.

При действии света или при слабом нагревании он переходит в серый мышьяк. Известны стекловидно-аморфные модификации: черный мышьяк и бурый мышьяк, которые при нагревании выше 270 o C превращаются в серый мышьяк

Химические свойства мышьяка.

Конфигурация внешних электронов атома мышьяка 3d 10 4s 2 4p 3 . B соединениях мышьяк имеет степени окисления +5, +3 и -3. Серый мышьяк менее активен химически, чем фосфор. При нагревании на воздухе выше 400 o C мышьяк горит, образуя As 2 O 3 .

С галогенами мышьяк соединяется непосредственно; при обычных условиях AsF 5 - газ; AsF 3 , AsCl 3 , AsBr 3 - бесцветные летучие жидкости; AsI 3 и As 2 I 4 - красные кристаллы. При нагревании мышьяка с серой получены сульфиды: оранжево-красный As 4 S 4 и лимонно-желтый As 2 S 3 .

Бледно-желтый серебристый сульфид As 2 S 5 (арсенопирит ) осаждается при пропускании H 2 S в охлаждаемый льдом раствор мышьяковой кислоты (или ее солей) в дымящей соляной кислоте: 2H 3 AsO 4 + 5H 2 S = As 2 S 5 + 8H 2 O; около 500 o C он разлагается на As 2 S 3 и серу.

Все сульфиды мышьяка нерастворимы в воде и разбавленных кислотах. Сильные окислители (смеси HNO 3 + HCl, HCl + KClO 3) переводят их в смесь H 3 AsO 4 и H 2 SO 4 .

Сульфид As 2 S 3 легко растворяется в сульфидах и полисульфидах аммония и щелочных металлов, образуя соли кислот - тиомышьяковистой H 3 AsS 3 и тиомышьяковой H 3 AsS 4 .

С кислородом мышьяк дает оксиды: оксид мышьяка (III) As 2 O 3 - мышьяковистый ангидрид и оксид мышьяка (V) As 2 O 5 - мышьяковый ангидрид. Первый из них образуется при действии кислорода на мышьяк или его сульфиды, например 2As 2 S 3 + 9O 2 = 2As 2 O 3 + 6SO 2 .

Пары As 2 O 3 конденсируются в бесцветную стекловидную массу, которая с течением времени становится непрозрачной вследствие образования мелких кристаллов кубической сингонии, плотность 3,865 г/см 3 . Плотность пара отвечает формуле As 4 O 6 ; выше 1800 o C пар состоит из As 2 O 3 .

В 100 г воды растворяется 2,1 г As 2 O 3 (при 25 o C). Оксид мышьяк (III) - соединение амфотер-ное, с преобладанием кислотных свойств. Известны соли (арсениты), отвечающие кислотам ортомышьяковистой H 3 AsO 3 и метамышьяковистой HAsO 2 ; сами же кислоты не получены. В воде растворимы только арсениты щелочных металлов и аммония.

As 2 O 3 и арсениты обычно бывают восстановителями (например, As 2 O 3 + 2I 2 + 5H 2 O = 4HI + 2H 3 AsO 4), но могут быть и окислителями (например, As 2 O 3 + 3C = 2As + ЗСО).

Оксид мышьяка (V) получают нагреванием мышьяковой кислоты H 3 AsO 4 (около 200 o C). Он бесцветен, около 500 o C разлагается на As 2 O 3 и O 2 . Мышьяковую кислоту получают действием концентрированной HNO 3 на As или As 2 O 3 .

Соли мышьяковой кислоты (арсенаты) нерастворимы в воде, за исключением солей щелочных металлов и аммония. Известны соли, отвечающие кислотам ортомышьяковой H 3 AsO 4 , метамышьяковой HAsO 3 и пиромышьяковой H 4 As 2 O 7 ; последние две кислоты в свободном состоянии не получены. При сплавлении с металлами мышьяк по большей части образует соединения (арсениды).

Получение мышьяка.

Мышьяк получают в промышленности нагреванием мышьякового колчедана:

FeAsS = FeS + As

или (реже) восстановлением As 2 O 3 углем. Оба процесса ведут в ретортах из огнеупорной глины, соединенных с приемником для конденсации паров мышьяка.

Мышьяковистый ангидрид получают окислительным обжигом мышьяковых руд или как побочный продукт обжига полиметаллических руд, почти всегда содержащих мышьяк. При окислительном обжиге образуются пары As 2 O 3 , которые конденсируются в уловительных камерах.

Сырой As 2 O 3 очищают возгонкой при 500-600 o C. Очищенный As 2 O 3 служит для производства мышьяка и его препаратов.

Применение мышьяка.

Небольшие добавки мышьяка (0,2-1,0% по массе) вводят в свинец, служащий для производства ружейной дроби (мышьяк повышает поверхностное натяжение расплавленного свинца, благодаря чему дробь получает форму, близкую к сферической; мышьяк несколько увеличивает твердость свинца). Как частичный заменитель сурьмы мышьяк входит в состав некоторых баббитов и типографских сплавов.

Чистый мышьяк не ядовит, но все его соединения, растворимые в воде или могущие перейти в раствор под действием желудочного сока, чрезвычайно ядовиты; особенно опасен мышьяковистый водород. Из применяемых на производстве соединений мышьяка наиболее токсичен мышьяковистый ангидрид.

Примесь мышьяка содержат почти все сульфидные руды цветных металлов, а также железный (серный) колчедан. Поэтому при их окислительном обжиге, наряду с сернистым ангидридом SO 2 , всегда образуется As 2 O 3 ; большая часть его конденсируется в дымовых каналах, но при отсутствии или малой эффективности очистных сооружений отходящие газы рудообжигательных печей увлекают заметные количества As 2 O 3 .

Чистый мышьяк, хотя и не ядовит, но при хранении на воздухе всегда покрывается налетом ядовитого As 2 O 3 . При отсутствии правильно выполненной вентиляции крайне опасно травление металлов (железа, цинка) техническими серной или соляной кислотами, содержащими примесь мышьяка, так как при этом образуется мышьяковистый водород.

Мышьяк в организме.

В качестве микроэлемента мышьяк повсеместно распространен в живой природе. Среднее содержание мышьяка в почвах 4*10 -4 %, в золе растений - 3*10 -5 %. Содержание мышьяка в морских организмах выше, чем в наземных (в рыбах 0,6-4,7 мг в 1 кг сырого вещества, накапливается в печени).

Наибольшее количество его (на 1 г ткани) обнаруживается в почках и печени (при приеме в пищу – в мозгах не накапливается). Много мышьяка содержится в легких и селезенке, коже и волосах; сравнительно мало - в спинномозговой жидкости, головном мозге (главном образом - в гипофизе), половых железах и других.

В тканях мышьяк находится в основной белковой фракции ("камень культуристов и спортсменов"), значительно меньше - в кислоторастворимой и лишь незначительная часть его обнаруживается в липидной фракции. Им лечат прогрессирующую мышечную дистрофию – в мозге и костях не накапливается (допинг спорта, лечат заложникво и узников конлагерей типа "Освенцем" в Польше, ЕС, 1941-1944 гг.).

Мышьяк участвует в окислительно-восстановительных реакциях: окислительном распаде сложных биологических углеводов и сахаров, брожении, гликолизе и т.п. Улучшает умственные способности (содейсвует процессу расщепления сахаров в мозге). Соединения мышьяка применяют в биохимии как специфические ингибиторы ферментов для изучения реакций обмена веществ. Содействует распаду биологических тканей (ускоряет). Активно применяется в стоматологии и онкологии - по ликвидации быстро растущих и рано стареющих раковых клеток и опухолей.

Смесь (твердый сульфидный сплав) таллия, мышьяка и свинца: Гутчинсонит (Хатчинсонит)

Формула минерала (Pb, Tl)S` Ag2S * 5 As2 S5 - сложная сульфидная и адсенидная твердосплавная соль. Ромб. Кристаллы призматические до игольчатых. Спайность совершенная по {010}. Агрегаты радиальноигольчатые, зернистые. Твердость 1,5-2. Удельный вес 4,6. Красный. Блеск алмазный. В гидротермальных месторождениях с доломитом, с сульфидами и арсенидами Zn, Fe, As и сульфоарсенидами. Результат сухой серной и мышьяковистой возгонки магмы через кальдеры и открытые жерла вулканов, а также сухой возгонки через трещины в глубинных магматических плутонитах из раскаленной магмы Земли. Содержит серебро. Входит в число десяти очень опасных для здоровья человека и животных и канцерогенных камней и минералов, кристаллизующихся в современных условиях среди других горных пород в виде вредной, опасной для здоровья (при самовольном обращении) и обманчивой рудной красоты. На фото - хатчинсонит с аурипигментом.

Ядовитые минералы. Гутчинсонит - назван по фамилии минералога Hutchinson из Кембриджского университета и по виду напоминает свинец (его могут использовать для защиты от радиации). Открыт в 1861 году. Смертельно опасная смесь (твердый сплав) таллия, мышьяка и свинца. Контакт с этим минералом может привести к выпадению волос (алопеция, облысение, плешивость), сложным заболеваниям кожи и к летальному исходу (смерти). Ядовитыми являются все его основные компоненты. Очень похож на свинец, самородное серебро, пирит ("сухой пирит") и арсенопирит. Похож также на антимонит (соединение сурьмы, тоже очень ядовитое). Похож также на цеолиты. Гутчинсонит является опасной и поразительной твердосплавной смесью таллия, свинца и мышьяка. Три редких, очень дорогих и ценных рудных металла образуют ядовитый смертельный коктейль минералов, с которым нужно обращаться с предельной осторожностью. Воздействуют на мозг, сердце и печень одновременно.

Таллий - мрачный двойник свинца. Этот плотный, жирный металл похож на свинец по атомной массе, но является еще более смертоносным. Таллий является редким металлом, который появляется в очень токсичных соединениях, состоящих из странных комбинаций элементов (твердые сплавы). Эффекты воздействия таллия опаснее свинца, и включают потерю волос (алопецию, облысение), серьезные заболевания при контакте с кожей и во многих случаях приводят к смерти. Гутчинсонит был назван в честь Джона Хатчинсона (John Hutchinson), известного минералога из Кембриджского университета. Этот минерал можно найти в горных районах Европы, чаще всего в рудных месторождениях. Минерал, популярный в медицинской стоматологии и др. Минерал боятся алкоголики.

Гутчинсонит (Хатчинсонит) иногда в шутку называют "сухим" или "твердым спиртом", "твердым алкоголем" (и не только за вредное воздействие опьяняющим отравлением на организм и здоровье человека). Химическая формула пищевого спирта (алкоголь) - С2 Н5 (ОН). Гутчинсонит (Хатчинсонит) имеет химическую формулу - 5 As2 S5 * (Pb, Tl) S` Ag2 S или 5 As2 S5 * (Pb, Tl) S` Ag Ag S. Формулу Гутчинсонита (Хатчинсонита) иногда переписывают иначе - As2 S5 * (Pb) + As2 S5 * (Tl) + As2 S5 * S + As2 S5 * Ag + As2 S5 * AgS. Химическое разделение компонентов на производстве также выполняется по типу разных спиртов (слои механического обогащения, различные по массе и весу, которые дробят ультразвуком и сепарируют в центрифуге или на виброплатформе - фильм ужасов "Чужие"). Возможны другие схожие варианты химической формулы (состав варьируется).

ДОПОГ 6.1
Токсичные вещества (яд)
Риск отравления при вдыхании, контакте с кожей или проглатывании. Составляют опасность для водной окружающей среды или канализационной системы
Использовать маску для аварийного оставления транспортного средства

ДОПОГ 3
Легковоспламеняющиеся жидкости
Риск пожара. Риск взрыва. Емкости могут взрываться при нагревании (сверхопасны – легко горят)

ДОПОГ 2.1
Легковоспламеняющиеся газы
Риск пожара. Риск взрыва. Могут находиться под давлением. Риск удушья. Могут вызывать ожоги и/или отморожения. Емкости могут взрываться при нагревании (сверхопасны - практически не горят)
Использовать укрытие. Избегать низких участков поверхности (ям, низин, траншей)
Красный ромб, номер ДОПОГ, черное или белое пламя

ДОПОГ 2.2
Газовый баллон Невоспламеняющиеся, нетоксичные газы.
Риск удушья. Могут находиться под давлением. Могут вызывать отморожение (похоже на ожог - бледность, пузыри, черная газовая гангрена - скрип). Емкости могут взрываться при нагревании (сверхопасны – взрыв от искры, пламени, спички, практически не горят)
Использовать укрытие. Избегать низких участков поверхности (ям, низин, траншей)
Зеленый ромб, номер ДОПОГ, черный или белый газовый баллон (типа "баллон", "термос")

ДОПОГ 2.3
Токсичные газы . Череп и скрещенные кости
Опасность отравления. Могут находиться под давлением. Могут вызывать ожоги и/или отморожения. Емкости могут взрываться при нагревании (сверхопасны – мгновенное распространение газов по окрестности)
Использовать маску для аварийного оставления транспортного средства. Использовать укрытие. Избегать низких участков поверхности (ям, низин, траншей)
Белый ромб, номер ДОПОГ, черный череп и скрещенные кости

Наименование особо опасного при транспортировке груза Номер
ООН
Класс
ДОПОГ
Мышьяка (III) окисел АРСЕНА ТРИОКСИД 1561 6.1
1685 6.1
1557 6.1
1561 6.1
Кальций мышьяковистокислый АРСЕНАТА СОЕДИНЕНИЕ ТВЕРДОЕ, Н.З.К. неорганическое включая: Арсенати, н.з.к., Арсенит, н.з.к., Арсена сульфиды, н.з.к. 1557 6.1
Кальций мышьяковокислый КАЛЬЦИЯ АРСЕНАТ 1573 6.1
КАЛЬЦИЯ АРСЕНАТ 1573 6.1
КАЛЬЦИЯ АРСЕНАТА И КАЛЬЦИЯ АРСЕНИТА СМЕСЬ ТВЕРДАЯ 1574 6.1
Кальция арсенит 1557 6.1
АММОНИЯ АРСЕНАТ 1546 6.1
Ангидрид мышьяковистый АРСЕНА ТРИОКСИД 1561 6.1
АРСЕН 1558 6.1
АРСЕНОВАЯ ПЫЛЬ 1562 6.1
Арсеноводород Арсин 2188 2
Арсено-содовый раствор 1556 6.1
АРСЕНА БРОМИД 1555 6.1
АРСЕНА ПЕНТАОКСИД 1559 6.1
АРСЕНА СОЕДИНЕНИЕ ЖИДКОЕ, Н.З.К. неорганическое, включая: Арсенати, н.з.к., Арсенит, н.з.к., но Арсена сульфиды, н.з.к. 1556 6.1
АРСЕНА СОЕДИНЕНИЕ ТВЕРДОЕ, Н.З.К. неорганическое, включая: Арсенати, н.з.к., Арсенит, н.з.к., но Арсена сульфиды, н.з.к. 1557 6.1
АРСЕНА ТРИОКСИД 1561 6.1
АРСЕНА ТРИХЛОРИД 1560 6.1
АРСИН 2188 2
ЖЕЛЕЗА (II) АРСЕНАТ 1608 6.1
ЖЕЛЕЗА (III) АРСЕНАТ 1606 6.1
ЖЕЛЕЗА (III) АРСЕНИТ 1607 6.1
КАЛИЯ АРСЕНАТ 1677 6.1
КАЛИЯ АРСЕНИТ 1678 6.1
КИСЛОТА АРСЕНОВАЯ ТВЕРДАЯ 1554 6.1
КИСЛОТА АРСЕНОВАЯ ЖИДКАЯ 1553 6.1
МАГНИЯ АРСЕНАТ 1622 6.1
МЕДИ АРСЕНИТ 1586 6.1
МЕДИ АЦЕТОАРСЕНИТ 1585 6.1
Натрий арсенистокислий НАТРИЯ АРСЕНИТ ТВЕРДЫЙ 2027 6.1
Натрий мышьяковокислый НАТРИЯ АРСЕНАТ 1685 6.1
НАТРИЯ АЗИД 1687 6.1
НАТРИЯ АРСЕНАТ 1685 6.1
НАТРИЯ АРСЕНИТ ТВЕРДЫЙ 2027 6.1
НАТРИЯ АРСЕНИТА ВОДНЫЙ РАСТВОР 1686 6.1
Олова арсенид 1557 6.1
Олово мышьяковистое Олова арсенит 1557 6.1
2760 3
ПЕСТИЦИД АРСЕНОСОДЕРЖАЩИЙ ЖИКИЙ ЛЕГКОВОСПЛАМЕНЯЮЩИЙСЯ ТОКСИЧНЫЙ с температурой возгорания менее 23 o С 2760 3
ПЕСТИЦИД АРСЕНОСОДЕРЖАЩИЙ ТВЕРДЫЙ ТОКСИЧНЫЙ 2759 6.1
ПЕСТИЦИД АРСЕНОСОДЕРЖАЩИЙ ЖИДКИЙ ТОКСИЧНЫЙ 2994 6.1
ПЕСТИЦИД АРСЕНОСОДЕРЖАЩИЙ ЖИКИЙ ТОКСИЧНЫЙ ЛЕГКОВОСПЛАМЕНЯЮЩИЙСЯ с температурой возгорания не менее 23 o С 2993 6.1
РТУТИ (II) АРСЕНАТ 1623 6.1
СВИНЦА АРСЕНАТИ 1617 6.1
СВИНЦА АРСЕНИТ 1618 6.1
СОЕДИНЕНИЕ АРСЕНО-ОРГАНІЧНА, ЖИДКОЕ, Н.З.К. 3280 6.1
СОЕДИНЕНИЕ АРСЕНО-ОРГАНИЧЕСКОЕТВЕРДОЕ, Н.З.К.* 3465 6.1
СЕРЕБРА АРСЕНИТ 1683 6.1
СТРОНЦИЯ АРСЕНИТ 1691 6.1
ЦИНКА АРСЕНАТ, ЦИНКА АРСЕНИТ или ЦИНКА АРСЕНАТА И ЦИНКА АРСЕНИТА СМЕСЬ 1712 6.1

Некоторые, умершие в Средние века от холеры, скончались не от нее. Симптомы болезни схожи с проявлениями отравления мышьяком .

Прознав это, средневековые дельцы стали предлагать триоксид элемента в качестве яда. Вещество . Смертельная доза – всего 60 граммов.

Их разбивали на порции, давая в течение нескольких недель. В итоге, никто не подозревал, что человек скончался не от холеры.

Вкус мышьяка не чувствуется в малых дозах, будучи, к примеру, в еде, или напитках. В современных реалиях, конечно, холеры нет.

Людям опасаться мышьяка не приходиться. Бояться, скорее, нужно мышам. Токсичное вещество – один из видов отравы для грызунов.

В их честь, кстати, элемент и назван. Слово «мышьяк» бытует лишь в русскоязычных странах. Официальное название вещества – арсеникум.

Обозначение в – As. Порядковый номер – 33. Исходя из него, можно предположить полный список свойств мышьяка. Но, не будем предполагать. Изучим вопрос наверняка.

Свойства мышьяка

Латинское название элемента переводится, как «сильный». Видимо, имеется в виду влияние вещества на организм.

При интоксикации начинается рвота, расстраивается пищеварение, крутит живот и частично блокируется работа нервной системы. не из слабых.

Отравление наступает от любой из аллотропных форм вещества. Аллтропия – это существование различных по строению и свойствам проявлений одного и того же элемента . Мышьяк наиболее устойчив в металлической форме.

Ромбоэдрические серо-стального цвета хрупки. Агрегаты имеют характерный металлический , но от контакта с влажным воздухом, тускнеют.

Мышьяк – металл , чья плотность равна почти 6-ти граммам на кубический сантиметр. У остальных форм элемента показатель меньше.

На втором месте аморфный мышьяк. Характеристика элемента : — почти черный цвет.

Плотность такой формы равна 4,7 граммам на кубический сантиметр. Внешне материал напоминает .

Привычное для обывателей состояние мышьяка – желтое. Кубическая кристаллизация неустойчива, переходит в аморфную при нагреве до 280-ти градусов Цельсия, или под действием простого света.

Поэтому, желтые мягкие, как , в темноте. Несмотря на окрас, агрегаты прозрачны.

Из ряда модификаций элемента видно, что металлом он является лишь наполовину. Очевидного ответа на вопрос: — «Мышьяк металл, или неметалл », нет.

Подтверждением служат химические реакции. 33-ий элемент является кислотообразующим. Однако, оказываясь в кислоте сам, не дает .

Металлы поступают иначе. В случае же мышьяка, не получаются даже при контакте с , одной из самых сильных .

Солеобразные соединения «рождаются» в ходе реакций мышьяка с активными металлами.

Имеются в виду окислители. 33-е вещество взаимодействует только с ними. Если у партнера нет выраженных окислительных свойств, взаимодействие не состоится.

Это касается даже и щелочей. То есть, мышьяк – химический элемент довольно инертный. Как же тогда его добыть, если список реакций весьма ограничен?

Добыча мышьяка

Добывают мышьяк попутно другим металлам. Отделяют их, остается 33-е вещество.

В природе существуют соединения мышьяка с другими элементами . Из них-то и извлекают 33-ий металл.

Процесс выгодный, поскольку вкупе с мышьяком часто идут , , и .

Он встречается в зернистых массах, либо кубических кристаллах оловянного цвета. Иногда, присутствует желтый отлив.

Соединение мышьяка и металла феррум имеет «собрата», в котором вместо 33-го вещества стоит . Это обычный пирит золотистого цвета.

Агрегаты похожи на арсеноверсию, но служить рудой мышьяка не могут, хотя, в виде примеси тоже содержат.

Мышьяк в обычном , кстати, тоже бывает, но, опять же, в качестве примеси.

Количество элемента на тонну столь мало, но не имеет смысла даже побочная добыча.

Если равномерно распределить мировые запасы мышьяка в земной коре, получится всего 5 граммов на тонну.

Так что, элемент не из распространенных, по количеству сравним с , , .

Если же смотреть на металлы, с которыми мышьяк образует минералы, то это не только , но и с кобальтом и никелем.

Общее число минералов 33-го элемента достигает 200-от. Встречается и самородная форма вещества.

Ее наличие объясняется химической инертностью мышьяка. Формируясь рядом с элементами, с коими не предусмотрены реакции, герой остается в гордом одиночестве.

При этом, зачастую, получаются игольчатые, или кубические агрегаты. Обычно, они срастаются между собой.

Применение мышьяка

Элемент мышьяк относится к двойственным не только проявляя свойства, как металла, так и не металла.

Двойственно и восприятие элемента человечеством. В Европе 33-е вещество всегда считали ядом.

В в 1733-ем году даже издали указ, запрещающий продажу и приобретение мышьяка.

В Азии же «отрава» уже 2000 лет используется медиками в лечении псориаза и сифилиса.

Врачи современного доказали, что 33-ий элемент атакует белки, провоцирующие онкологию.

В 20-ом веке на сторону азиатов встали и некоторые европейские врачи. В 1906-ом году, к примеру, западные фармацевты изобрели препарат сальварсан.

Он стал первым в официальной медицине, применялся против ряда инфекционных болезней.

Правда, к препарату, как и любому постоянному приему мышьяка в малых дозах, вырабатывается иммунитет.

Эффективны 1-2 курса препарата. Если иммунитет сформировался, люди могут принять смертельную дозу элемента и остаться живыми.

Кроме медиков 33-им элементом заинтересовались металлурги, став добавлять в для производства дроби.

Она делается на основе , который входит в тяжелые металлы. Мышьяк увеличивает свинца и позволяет его брызгам при отливке принимать сферическую форму. Она правильная, что повышает качество дроби.

Мышьяк можно найти и в термометрах, точнее их . Оно зовется венским, замешивается с оксидом 33-го вещества.

Соединение служит осветлителем. Мышьяк применяли и стеклодувы древности, но, в качестве матирующей добавки.

Непрозрачным стекло становится при внушительной примеси токсичного элемента.

Соблюдая пропорции, многие стеклодувы заболевали и умирали раньше времени.

И специалисты кожевенного производства пользуются сульфидами мышьяка .

Элемент главной подгруппы 5-ой группы таблицы Менделеева входит в состав некоторых красок. В кожевенной же промышленности арсеникум помогает удалять волосы с .

Цена мышьяка

Чистый мышьяк, чаще всего, предлагают в металлической форме. Цены устанавливают за килограмм, или тонну.

1000 граммов стоит около 70-ти рублей. Для металлургов предлагают готовые , к примеру, мышьяк с медью.

В этом случае за кило берут уже 1500-1900 рублей. Килограммами продают и мышьяковистый ангидрит.

Его используют в качестве кожного лекарства. Средство некротическое, то есть омертвляет пораженный участок, убивая не только возбудителя болезни, но и сами клетки. Метод радикальный, зато, эффективный.

Мышьяк является неметаллом, образует соединения, подобные по его химическим свойствам. Однако, наряду с неметаллическими свойствами, мышьяк проявляет и металлические. На воздухе при обычных условиях мышьяк слегка окисляется с поверхности. Ни в воде, ни в органических растворителях мышьяк и его аналоги нерастворимы.

Мышьяк химически активен. На воздухе при нормальной температуре даже компактный (плавленый) металлический мышьяк легко окисляется, при нагревании порошкообразный мышьяк воспламеняется и горит голубым пламенем с образованием оксида As 2 O 3 . Известен также термически менее устойчивый нелетучий оксид As 2 O 5 .

При нагревании (в отсутствие воздуха) As возгоняется (температура возгонки 615 о С). Пар состоит из молекул As 4 с ничтожной (порядка 0,03%) примесью молекул As 2 .

Мышьяк относится к группе элементов окислителей-восстановителей. При действии сильных восстановителей он проявляет окислительные свойства. Так, при действии металлов и водорода в момент выделения он способен давать соответствующие металлические и водородистые соединения:

6Ca +As 4 = 2Ca 3 As 2

При действии сильных окислителей мышьяк переходит в трех- или пятивалентное состояние. Например, при накаливании на воздухе мышьяк, окисляясь кислородом, сгорает и образует белый дым – оксид мышьяка (III) As 2 O 3:

As 4 + 3O 2 =2As 2 O 3

Устойчивые формы оксида мышьяка в газовой фазе – сесквиоксид (мышьяковистый ангидрид) As 2 O 3 и его димер As 4 O 6 . До 300 о С основная форма в газовой фазе – димер, выше этой температуры он заметно диссоциирован, а при температурах выше 1800 о С газообразный оксид состоит практически из мономерных молекул As 2 O 3 .

Газообразная смесь As 4 O 6 и As 2 O 3 образуется при горении As в кислороде, при окислительном обжиге сульфидных минералов As, например арсенопирита, руд цветных металлов и полимерных руд.

При конденсации пара As 2 O 3 (As 4 O 6) выше 310 о С образуется стекловидная форма As 2 O 3 . При конденсации пара ниже 310 о С образуется бесцветная поликристаллическая кубическая модификация арсенолит. Все формы As 2 O 3 хорошо растворимы в кислотах и щелочах.

Оксид As(V) (мышьяковый ангидрид) As 2 O 5 – бесцветные кристаллы ромбической сингонии. При нагревании As 2 O 5 диссоциирует на As 4 O 6 (газ) и О 2 . Получают As 2 O 5 обезвоживанием концентрированных растворов H 3 AsO 4 с последующим прокаливанием образующихся гидратов.

Известен оксид As 2 O 4 , получаемый спеканием As 2 O 3 и As 2 O 5 при 280 о С в присутствии паров воды. Известен также газообразный монооксид AsO, образующийся при электрическом разряде в парах триоксида As при пониженном давлении.

При растворении в воде As 2 O 5 образует существующие только в растворе ортомышьяковистую H 3 AsO 3 , или As(OH) 3 , и метамышьяковистую HAsO 2 , или AsO(OH), кислоты, обладающие амфотерными, преимущественно кислыми, свойствами.

По отношению к кислотам мышьяк ведет себя следующим образом:

— с соляной кислотой мышьяк не реагирует, но в присутствии кислорода образуется трихлорид мышьяка AsCl 3:

4As +3O 2 +12HCl = 4AsCl 3 +6H 2 O

— разбавленная азотная кислота при нагревании окисляет мышьяк до ортомышьяковистой кислоты H 3 AsO 3 , а концентрированная азотная кислота – до ортомышьякой кислоты H 3 AsO 4:

3As + 5HNO 3 + 2H 2 O = 3H 2 AsO 4 +5NO

Ортомышьяковая кислота (мышьяковая кислота) H 3 AsO 4 *0.5H 2 O – бесцветные кристаллы; температура плавления – 36 о С (с разложением); растворима в воде (88% по массе при 20 о С); гигроскопична; в водных растворах – трехосновная кислота; при нагревании около 100 о С теряет воду, превращаясь в пиромышьяковую кислоту H 4 As 5 O 7 , при более высоких температурах переходит в метамышьяковую кислоту HAsO 3 . Получают окислением As или As 2 O 3 концентрированной HNO 3 . Она легкорастворимая в воде и по силе приблизительно равна фосфорной.

Окислительные свойства мышьяковой кислоты заметно проявляются лишь в кислой среде. Мышьяковая кислота способна окислить HI до I 2 по обратимым реакциям:

H 3 AsO 4 + 2HI = H 3 AsO 3 + I 2 + H 2 O

Ортомышьяковистая кислота (мышьяковистая кислота) H 3 AsO 3 существует только в водном растворе; слабая кислота; получают растворением As 2 O 3 в воде; промежуточный продукт при получении арсенитов (III) и других соединений.

— концентрированная серная кислота реагирует с мышьяком по следующему уравнению c образованием ортомышьяковистой кислоты:

2As + 3H 2 SO 4 = 2H 3 AsO 3 +3SO 2

— растворы щелочей в отсутствие кислорода с мышьяком не реагируют. При кипячении мышьяка со щелочами он окисляется в соли мышьяковистой кислоты H 3 AsO 3 . При сплавлении со щелочами образуется арсин (мышьяковистый водород) AsH 3 и арсенаты (III). Применяют AsH 3

для легирования полупроводниковых материалов мышьяком, для получения As высокой чистоты.

Известны неустойчивые высшие арсины: диарсин As 2 H 4 , разлагается уже при -100 о С; триарсин As 3 H 5 .

Металлический мышьяк легко взаимодействует с галогенами, давая летучие галогениды AsHal 3:

As +3Cl 2 = 2AsCl 3

AsCl 3 – бесцветная маслянистая жидкость, дымящаяся на воздухе, при застывании образует кристаллы с перламутровым блеском.

C F 2 образует также и AsF 5 — пентафторид – бесцветный газ, растворимый в воде и растворах щелочей (с небольшим количеством тепла), в диэтиловом эфире, этаноле и бензоле.

Порошкообразный мышьяк самовоспламеняется в среде F 2 и Cl 2 .

С S, Se и Te мышьяк образует соответствующие халькогениды :

сульфиды — As 2 S 5 , As 2 S 3 (в природе – минерал аурипигмент), As 4 S 4 (минерал реальгар) и As 4 S 3 (минерал диморфит); селениды – As 2 Se 3 и As 4 Se 4 ; теллурид – As 2 Te 3 . Халькогениды мышьяка устойчивы на воздухе, не растворимы в воде, хорошо растворимы в растворах щелочей, при нагревании – в HNO 3 . Обладают полупроводниковыми свойствами, прозрачны в ИК области спектра.

С большинством металлов дает металлические соединения – арсениды . Галлия арсенид и индия арсенид – важные полупроводниковые соединения.

Известны многочисленные мышьякорганические соединения. Мышьякорганические соединения содержат связь As-C. Иногда к мышьякорганическим соединениям относят все органические соединения, содержащие As, например эфиры мышьяковистой кислоты (RO) 3 As и мышьяковой кислоты (RO) 3 AsO. Наиболее многочисленная группа мышьякорганических соединений – производные As с координационным числом 3. К ней относятся органоарсины R n AsH 3-n , тетраорганодиарсины R 2 As-AsR 2 , циклические и линейные полиарганоарсины (RAs) n , а также органоарсонистые и диарганоарсинистые кислоты и их производные R n AsX 3-n (X= OH, SH, Hal, OR’, NR 2 ’ и др.). Большинство мышьякорганических соединений – жидкости, полиорганоарсины и органические кислоты As – твердые вещества, CH 3 AsH 2 и CF 3 AsH 2 – газы. Эти соединения, как правило, растворимы в органических растворителях, ограничено растворимы в воде, в отсутствие кислорода и влаги сравнительно устойчивы. Некоторые тетраорганодиарсины на воздухе воспламеняются.

Статьи по теме